
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Effect of pre-calving diet energy content on
immunologic and metabolic parameters in the
transition cow
Hayley Ruth Springer
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Medical Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Springer, Hayley Ruth, "Effect of pre-calving diet energy content on immunologic and metabolic parameters in the transition cow"
(2008). Graduate Theses and Dissertations. 10976.
https://lib.dr.iastate.edu/etd/10976

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/664?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10976?utm_source=lib.dr.iastate.edu%2Fetd%2F10976&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Effect of pre-calving diet energy content on immunologic and metabolic 
parameters in the transition dairy cow  

 
 

by 
 
 

Hayley Ruth Springer 
 
 
 

A thesis submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 

Major:  Biomedical Sciences (Physiology) 
 

Program of Study Committee: 
Jesse P. Goff, Major Professor 

Dean H. Riedesel 
James A. Roth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2008



www.manaraa.com

ii 
 

TABLE OF CONTENTS 
 

ABSTRACT............................................................................................................................ iv 
 
GENERAL INTRODUCTION................................................................................................ 1 
 Thesis Organization ........................................................................................................... 2 
 
LITERATURE REVIEW ........................................................................................................ 3 
 Immune System ................................................................................................................. 4 
 Transition Cow Immunology............................................................................................. 7 
 Metabolic Disease in the Transition Cow.......................................................................... 9 
 Infectious Disease in the Transition Cow ........................................................................ 13 
 Transition Cow Nutrition................................................................................................. 15 
 
EFFECT OF ENERGY CONTENT OF PRE-PARTUM DIET ON DRY MATTER  
INTAKE AND METABOLIC PARAMETERS OF PERIPARTURIENT DAIRY  
COWS.................................................................................................................................... 18 
 Interpretive Summary ...................................................................................................... 18 
 Abstract ............................................................................................................................ 18 
 Introduction...................................................................................................................... 19 
 Materials and Methods..................................................................................................... 21 
  Animals and Dietary Treatments ............................................................................... 21 
  Glucose Tolerance Test.............................................................................................. 23 
  Liver Biopsy............................................................................................................... 24 
  Plasma Analytical Methods ....................................................................................... 25 
  Statistical Analysis..................................................................................................... 26 
 Results and Discussion .................................................................................................... 26 
  General Health ........................................................................................................... 26 
  Effects of Diet on DMI and Metabolic Parameters from Three Wks Pre-Partum  

to Four Days Pre-Partum ..................................................................................... 27 
  Effects of Diet on DMI and Metabolic Parameters during the Immediate  

Close-Up Period (Three d Pre-Partum to Calving).............................................. 29 
  Effects of Diet on DMI and Metabolic Parameters Post-Calving.............................. 31 
  Other Dietary Effects across the Entire Experimental Period ................................... 32 
 CONCLUSIONS.............................................................................................................. 34 
 ACKNOWLEDGMENTS ............................................................................................... 35 
 
EFFECT OF ENERGY CONTENT OF PRE-PARTUM DIET ON IMMUNE  
FUNCTION OF PERIPARTURIENT DAIRY COWS AND RESPONSE TO 
INTRAMAMMARY BACTERIAL CHALLENGE............................................................. 43 
INTERPRETIVE SUMMARY.............................................................................................. 43 
 Abstract ............................................................................................................................ 43 
 Introduction...................................................................................................................... 44 
 Materials and Methods..................................................................................................... 46 
  Animals and Experimental Design ............................................................................ 46 



www.manaraa.com

iii 
 

  Periparturient Immune Function................................................................................ 46 
  Mastitis Challenge ..................................................................................................... 49 
  Statistics ..................................................................................................................... 50 
 Results and Discussion .................................................................................................... 52 
  Peripartum Immune Function .................................................................................... 52 
  Mastitis Challenge ..................................................................................................... 53 
 Conclusions...................................................................................................................... 58 
 Acknowledgments............................................................................................................ 58 
 
GENERAL DISCUSSION .................................................................................................... 68 
 Effects of Diet on DMI and Metabolic Parameters Pre-Partum ...................................... 68 
 Effects of Diet on DMI and Metabolic Parameters Post-Calving.................................... 71 
 Effect of Diet on Peripartum Immune Function .............................................................. 73 
 Effect of Diet on Mastitis Challenge ............................................................................... 75 
 Management Factors........................................................................................................ 77 
 
GENERAL CONCLUSIONS................................................................................................ 79 
 
REFERENCES ...................................................................................................................... 80 
 
APPENDIX 1. NEUTROPHIL IODINATION ASSAY....................................................... 92 
 
APPENDIX 2. INF-γ BLOOD STIMULATION .................................................................. 94 
 
APPENDIX 3. SERUM IRON DETERMINATION ............................................................ 95 
 
ACKNOWLEDGMENTS ..................................................................................................... 96 
 
 



www.manaraa.com

iv 
 

ABSTRACT 

Over the last 30 years the trend on dairies has been to increase the energy content of the pre-

partum ration to enhance dry matter intake (DMI) during the final weeks of gestation and 

prepare the rumen for the higher energy diets of lactation.  In the last few years a number of 

dairies have shifted to a completely different dietary strategy; feeding a lower, but adequate, 

energy diet, which utilizes straw as a major component of the diet.  The objective of this 

study was to determine if the institution of a lower energy pre-partum diet had any negative 

effects on metabolic or immunologic status of cows when compared to cows fed a higher 

energy pre-partum diet. Primiparous heifers were assigned to either a HIGH E diet (1.56 

Mcal NE(L) / kg) or a LOW E diet treatment (1.35 Mcal NE(L)/kg diet) about five wks 

before calving.  DMI was 1.2 kg/d greater in the HIGH E cows in the three weeks prior to 

calving. The LOW E diet did reduce the magnitude of DMI depression just before calving, 

but apart from a small reduction in plasma non-esterified fatty acid concentraion (NEFA) the 

day of calving, few major benefits of this reduction were seen.  DMI after calving was 

similar in the two groups of cows.  Body condition scores of the cows just before calving and 

at 21 and 44 days in milk (DIM) were statistically similar across the dietary treatments.  A 

glucose tolerance test was performed on a subset of animals in each dietary treatment about 

one week prior to calving.  No statistically significant difference was observed in glucose 

clearance from the blood or insulin secretion pattern suggesting no difference in tissue 

sensitivity to insulin was induced by the dietary treatments.  Milk production during the first 

45 days of lactation was statistically similar in HIGH E (27.1 kg/d) and LOW E cows (28.2 

kg/d).  Dietary treatment had no significant effect on liver triglyceride content on day 1 after 

calving, days to first ovulation, or plasma NEFA profile after calving.  In vitro immune 
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function was assessed by neutrophil iodination, differential white blood cell counts, and 

whole blood interferon-γ production in response to both recall antigens and non-specific 

stimulation. There was no evidence that prepartal dietary energy impacted the degree to 

which these in vitro tests of immune function were suppressed in the transition cow.  It is 

suspected that prepartum energy would have an effect on colostrum quality, but in this study, 

prepartum dietary energy had no effect on protein and IgG content of colostrum.  The 

competency of the immune system as a whole was assessed by response to intramammary 

challenge with a mildly pathogenic strain of Escherichia coli.  Throughout the course of the 

challenge, quantitative milk bacterial culture, milk somatic cell count, rectal temperature, 

differential WBC counts, serum minerals, and acute phase response were assessed and no 

differences were noted between dietary treatments. All animals were similarly able to 

successfully recover from the experimentally induced E. coli mastitis.  Feeding a high energy 

diet prior to calving offers no advantages to health or production over a lower energy diet. 

The utilization of a low energy density diet to limit energy intake pre-partum is not 

detrimental to the dairy heifer. 

 



www.manaraa.com

1 

INTRODUCTION 

A pivotal time in the life of a dairy cow occurs during a period three weeks prior to 

through three weeks after calving, denoted as the transition period, when the dairy cow faces 

tremendous metabolic and physiologic changes that challenge the homeostatic mechanisms 

of the body (Grummer, 1995). As a result of these challenges, the transition cow is at a much 

greater risk of metabolic and infectious disease than cows in other stages of lactation.  

Managing the transition cow to minimize health problems provides vital economic benefit for 

dairy producers, as the impact of diseases of the transition period can affect the productivity 

of the cow for the upcoming as well as subsequent lactations.   

One of the greatest challenges during the transition period is meeting the nutrient 

demands of the cow.  In late gestation, the demands of the pregnant uterus are high, but the 

demands associated with early lactation are much greater.  These changes are accentuated by 

the decreased dry matter intake (DMI) seen in almost all cows around the time of calving 

(Bertics et al., 1992, Grummer, 1995). The combination of reduced DMI and increased 

energy demand results in a period of negative energy balance.   

In addition to the metabolic changes seen in the transition cow, both neutrophil and 

lymphocyte function are impaired (Kehrli et al., 1989a, Kehrli et al., 1989b).  This 

immunosuppression results in a higher risk of infectious disease, such as mastitis and 

metritis.  Reduced neutrophil function has also been associated with the occurrence of 

retained placenta (Kimura et al., 2002b).  Changes in immune function have, in part, been 

related to the onset of lactation.  Kimura et al. demonstrated that some aspects of 

immunosuppression were alleviated by mastectomy (Kimura et al., 1999a).  This suggests 
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that these changes may be related to the negative energy balance associated with the onset of 

lactation.   

Much of the recent research in transition cow nutrition has focused on maximizing 

energy intake during the close-up period, but more recent research has suggested that the 

degree of decline in DMI at the time of calving may actually have a greater impact on the 

health of the dairy cow than the level of energy intake at that time (Grummer et al., 2004).  

Further evidence has suggested that those cows suffering the greatest decline in feed intake 

just before calving are the most immune suppressed, resulting in a higher incidence of 

metritis and endometritis in these cows (Hammon et al., 2006, Urton et al., 2005).  The 

purpose of this study is to test the hypothesis that metabolic profiles, milk production, and 

immune function would be improved by feeding heifers a diet that met, but did not exceed 

their energy requirements during the last five weeks before calving, as opposed to a diet that 

exceeded their energy requirement.  

Thesis Organization 

 This thesis begins with a review of pertinent literature, followed by two journal 

articles.  The first journal article addresses the metabolic effects of varying pre-calving 

dietary energy while the second paper addresses the immunologic parameters.  Hayley 

Springer is the primary researcher and author on both papers.  Jesse Goff is the 

corresponding author of both papers.  Doug Bannerman and Brian Nonnecke served as 

corresponding authors for the immune function paper.   The papers are followed by a 

comprehensive discussion and a general conclusion.  This is followed by appendices 

containing protocols utilized during the study and a comprehensive reference list.  
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LITERATURE REVIEW  

 Managing the transition cow is one of the greatest challenges of the dairy industry.  

Metabolic problems, immunosuppression, and infectious disease are common in these cows 

as they face great nutritional, social, and hormonal changes around the time of calving.  

Much research has been done on these changes, yet methods to alleviate the problems are 

still elusive.  The following section presents information on the transition period, the immune 

system, immunosuppression during the transition period, metabolic diseases, infectious 

diseases, and a possible dietary change to ease the transition from gestation to lactation: 

feeding a diet that meets but does not exceed the energy requirements of the cow.  The goal 

of this diet is to prevent the drop in DMI at calving and to stimulate postpartum intake.  The 

increased fiber content also seems to be able to reduce the incidence of displaced abomasum 

following calving.   

 During the transition period, the dairy cow must undergo immense metabolic and 

physiologic adaptation due to the high demands of lactation.  In late gestation the dairy cow 

requires 0.82 Mcal of energy, 117g protein, 10.3 g Ca, 5.4 g P, and 0.2 g Mg beyond daily 

maintenance needs to support fetal growth.  Following parturition, the production of 10 kg of 

colostrum requires 11 Mcal of energy, 140g protein, 23 g Ca, 9 g P, and 2 g Mg above 

maintenance (Goff and Horst, 1997a).  This jump in nutrient requirements comes at a time 

when dry matter intake (DMI) is depressed (Bertics et al., 1992, Grummer, 1995), likely due 

to a variety of factors including increased concentration of sex hormones, mobilization of 

lipid stores, and possibly decreased rumen capacity due to the increasing size of the fetus and 

associated tissues (Ingvartsen and Andersen, 2000).  Hormone levels fluctuate greatly around 

the time of calving.  At parturition, plasma levels of glucocorticoid, estradiol, and estrone 
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peak (Smith and Schanbacher, 1973).  Failure to accommodate the metabolic demands of the 

onset of lactation results in a variety of metabolic diseases in the transition cow.  The 

elevated incidence of infectious disease is likely due to a period of immunosuppression 

associated with calving. 

Immune System 

 The immune system can be divided into two major branches: innate and adaptive.  

The innate immune system provides the first line of defense while the adaptive immune 

system has a slower, but more specific response to pathogens.  Proper function of both of 

these branches is vital to disease prevention.  

The innate immune system is the body’s first line of defense against invading 

pathogens and has both cellular and non-cellular components.  Physical barriers, such as skin 

and the muco-cilliary ladder in the respiratory tract, as well as chemical barriers, including 

lactoferrin and lysozyme, comprise the non-cellular defenses of the innate immune system. 

The two primary cells of the innate immune system are neutrophils and macrophages.   

Neutrophils, or polymorphonuclear leukocytes (PMN), are the first cellular 

responders to a site of infection.  These cells circulate throughout the body patrolling for 

signs of infection, loosely tethered to the endothelium by adhesion molecules such as L-

selectin (CD62L).  Upon recognition of a chemotactic signal, the neutrophil leaves the blood 

vessel by a process of  adherence and extravasation facilitated by β2-integrin (CD11/CD18).  

The selectin family is characterized by a lectin-like domain that allows binding to 

carbohydrate groups.  The interaction between L-selectin on neutrophils and carbohydrate 

groups on the endothelial cell allows the neutrophil to roll along the endothelial wall where it 

can interact with inflammatory mediators at sites of inflammation and become activated.  



www.manaraa.com

5 

Activation of the neutrophil increases the affinity of β2-integrin for intercellular adhesion 

molecules (ICAM) on the endothelial cell, allowing tight adhesion and extravasation of the 

neutrophil.  Upon extravasation, the neutrophil follows chemotactic signals to the site of 

infection where it can phagocytize, then kill the pathogen by releasing oxygen radicals into 

the phagocytic vacuole.  These steps are collectively known as the oxidative burst.   

The macrophage is a phagocytic cell of the innate immune system which, in addition 

to ingesting and eliminating foreign material, is an antigen presenting cell.  Macrophages 

break down foreign proteins to peptides that are presented on class II major 

histocompatability (MHC) molecules on the surface of the cell.  These peptides are then 

recognized by B cells and T cells in the adaptive immune system.  Macrophages also 

communicate with cells of the adaptive immune system by secretion of growth factors, called 

cytokines, which modulate the immune response, thus the macrophage is an important 

mediator between the innate and adaptive branches of the immune system.   

 There are primarily two types of cells in the adaptive immune system, B cells and T 

cells, both of which have antigen receptors that are specific to a certain antigen. B cells 

recognize antigen via surface bound immunoglobulins (Ig).  Upon antigen recognition, the B 

cell proliferates, producing plasma cells and memory B cells.  The plasma cells secrete 

immunoglobulin that binds to the pathogen and facilitates its destruction or removal from the 

body.  During the proliferation of naïve B cells following activation, a process of refining the 

antigenic specificity of the immunoglobulins occurs, producing memory cells that have a 

higher affinity for the antigen.  This affinity maturation, paired with the greater number of 

antigen-specific memory cells compared to naïve cells, allows a stronger, faster response 

should the antigen be encountered a second time.  Activated B cells also have surface MHC 
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II, along with the necessary costimulatory molecules, allowing presentation of antigen to T 

cells.   

There are two major types of T cells, helper T cells (TH), and cytotoxic T cells (TC).  

A third subset, the γδ T cell, are often considered to have a role in the innate immune system, 

or as a link between the innate and adaptive immune systems (Born et al., 2006).  The two 

major subsets of T cells are physically distinguished by surface molecules.  All T cells have 

CD3, T cell receptors, on their surface.  In addition to CD3, TH cells express CD4 co-

stimulatory molecule and TC cells express CD8.  Unlike the B cell, which can recognize 

antigen directly, TH and TC cells can only recognize antigen that has been processed and 

presented on MHC molecules.  TH cells recognize antigen in the context of MHC class II on 

professional antigen presenting cells such as B cells and macrophages.  TH cells can be 

further divided into TH -1 and TH-2 cells based on the cytokines secreted.  TH-1 cells 

primarily secrete cytokines, including IFN-γ, IL-2, and TNF-β, that support inflammation 

and stimulate macrophages and cytotoxic T lymphocytes (CTL).  TH-2 cells, on the other 

hand, activate B cells and antibody dependent immune responses by secreting cytokines 

including IL-4, IL-5, IL-6, and IL-10.  Tc cells recognize antigen presented on MHC class I 

molecules, which are expressed by all nucleated cells of the body.  Unlike the peptides 

presented on MHC II, which are primarily derived from extracellular pathogens, MHC I 

presents intracellular peptides that, under normal circumstances, are self peptides.  In the case 

of a viral infection or a neoplastic cell, the peptides presented in association with MHC I 

molecules are recognized by TC cells as non-self.  After antigen recognition and stimulation 

by cytokines secreted by TH cells, TC cells differentiate into CTL, which identify and 

eliminate cells presenting non-self peptides on MHC I. 
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Although B and T cells require specific antigens for stimulation, some plant proteins 

can non-specifically stimulate these cells, as well as other immune cells.  These proteins are 

known as mitogens and are often used in research to nonspecifically induce immune cell 

proliferation.  These assays can be utilized for in vitro assessment of immune function.  In 

this study, mitogens are employed in demonstrating immune function in the transition dairy 

cow.   

Transition Cow Immunology 

 The exact cause of impaired immune function in the transition cow is unknown, but is 

likely the consequence of many interrelated factors.  Analysis of immune function in 

mastectomized cows during the transition period has demonstrated some of the impacts of 

lactational demands on the immune system.  Intact, milk producing, cows show a drop in 

lymphocyte function and changes in leukocyte subsets that were not evident in 

mastectomized cows (Kimura et al., 2002a, Nonnecke et al., 2003).  Neutrophil function was 

suppressed in both intact and mastectomized cows at the time of parturition, but functionality 

was restored more quickly following parturition in mastectomized cows (Kimura et al., 

1999a).  Although these studies reveal that the mammary gland does have an effect on 

immune function in the periparturient cow, other factors must be involved, as not all signs of 

immunosuppression were eliminated by mastectomy.  The hormonal changes at calving may 

also play a role in periparturient immunosuppression.  Glucocorticoids, which are elevated at 

calving, have been shown to reduce both neutrophil and lymphocyte function (Roth and 

Kaeberle, 1981, Roth and Kaeberle, 1982).  Sex hormones, such as estradiol, which are 

elevated at calving, have also been shown to inhibit immune function (Lamote et al., 2004).  

Although hormonal and nutrient changes are likely key players in immune suppression in the 
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transition dairy cow, other factors, such as management, and social stresses probably also 

contribute. 

 The neutrophil plays such an essential role as a first responder in host defense that it 

is often studied when assessing immune function.  In the transition cow, a number of studies 

have found impaired oxidative burst using a variety of measures, including myeloperoxidase 

activity, cytochrome C reduction, and chemiluminescence (Cai et al., 1994, Detilleux et al., 

1995, Kehrli et al., 1989b, Kimura et al., 1999a, Mateus et al., 2002, Mehrzad et al., 2002).  

Random migration of neutrophils has also been found to be impaired in the transition cow 

(Detilleux et al., 1995, Kehrli et al., 1989b).  Parturition has also been associated with a 

reduced proportion of cells expressing the adhesion molecule L-selectin (CD62L), as has 

been demonstrated in some (Kimura et al., 1999b, Meglia et al., 2001), but not all studies 

(Harp et al., 2005).  This response may be largely attributed to the effects of glucocorticoids 

on L-selectin expression  (Burton et al., 1995).  A study of changes in mRNA in neutrophils 

around calving revealed reduced expression of some genes related to basic life functions, 

such as the citric acid cycle and DNA binding proteins (Madsen et al., 2002).  In addition to 

impairment in neutrophil function, the transition period also has negative impacts on the 

adaptive immune system.   

   Several studies have found reduced lymphocyte proliferation in response to mitogen 

during the transition period (Kehrli et al., 1989a, Nonnecke et al., 2003, Shafer-Weaver et al., 

1996).  Changes in lymphocyte populations have also been noted.  Reduced percentages of 

cells positive for CD3, CD4, γδTCR, and CD8 have been found (Kimura et al., 1999b, 

Kimura et al., 2002a).  These changes were not seen in mastectomized cattle (Kimura et al., 

2002a).  Nonnecke et al. demonstrated reduced secretion of IgM and IFN-γ in the dairy cow 
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during the first two weeks of lactation (Nonnecke et al., 2003).  There is also evidence of 

changes in TH subtypes in the transition cow, with TH-2 predominating during this period 

(Shafer-Weaver et al., 1996).  These changes in immune function are likely the reason for the 

high incidence of infectious disease in the transition cow, but they may also contribute to 

other transition cow diseases, such as retained placenta.  

Metabolic Disease in the Transition Cow 

Increased energy needs paired with reduced energy intake results in a negative energy 

balance during the transition period.  To provide energy for the developing fetus and the 

onset of lactation, lipids are mobilized from adipose tissue, as seen by the rise in non-

esterified fatty acids (NEFA) in plasma at parturition (Emery et al., 1992).  The NEFA are 

taken up by the liver and can be either completely oxidized, or can undergo incomplete 

oxidation, yielding ketone bodies such as β-hydroxybutyrate (BHBA), acetoacetate, and 

acetone.  Ketone bodies are an alternative to glucose for a fuel source in many tissues.  

Although ketones serve as an important energy source, high levels of BHBA and acetoacetate 

can reduce the functionality of organs due to cytotoxic effects (Bobe et al., 2004).  In 

particular, these ketones can inhibit β-oxidation, the citric acid cycle, and gluconeogenesis 

(Bobe et al., 2004, Veenhuizen et al., 1991).  Cows with clinical ketosis show reduced 

appetite and milk yield, rapid body weight loss, and are usually listless.  Subclinical ketosis, 

affecting up to 34% of dairy cattle, has a significant economic impact due to reduced milk 

production and increased risk of other metabolic diseases in the periparturient period 

(Duffield, 2000).   

In addition to complete and incomplete oxidation of NEFA taken up by the liver, fatty 

acids can also be esterified to triglycerides.  In ruminants, the ability to form triglycerides 
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within the liver is similar to that of other species, but the rate of export from the liver is quite 

low (Ingvartsen and Andersen, 2000).  The level of lipid mobilization in the transition cow 

often results in triglyceride formation at a rate that exceeds the ability of the liver to export it, 

leading to accumulation of lipids in the liver (Goff and Horst, 1997b).  Most dairy cattle have 

some degree of lipid accumulation in the liver at the time of calving, but excessive lipid 

accumulation can impair the metabolic activity of the hepatocyte (Bobe et al., 2004).  

Hormone sensitivity, as well as hormone levels are also affected by fatty liver.  Hormone 

levels are altered due to reduced clearance by the liver, and reduced steroid synthesis due to 

impaired cholesteryl ester production (Bobe et al., 2004). Clinically, fatty liver reduces health 

status, productivity, and fertility, resulting in economic losses due to increased veterinary 

bills, longer calving intervals, and reduced milk yield (Bobe et al., 2004).   

In addition to elevated energy demands, the onset of lactation brings with it a great 

increase in demand for minerals, particularly calcium.  During early lactation, the dairy cow 

requires an extra 20-30g of Ca per day, which is largely met by calcium mobilization from 

bone (Goff, 2000). In addition to its utilization in milk, calcium is also essential for many 

other life processes, particularly muscle contraction.  Thus, failures of the mechanisms of 

calcium homeostasis result in a disease state known as milk fever or hypocalcemia.  When 

blood calcium falls, symptoms of hypocalcemia, including unsteadiness, cold ears, normal to 

low temperature, increased pulse rate, and in more advanced cases, inability to rise, begin to 

show.  In severe cases, hypocalcemia can result in coma and death.   

Homeostatic mechanisms to maintain blood calcium primarily revolve around 

parathyroid hormone (PTH) secretion from the parathyroid gland in response to low blood 

calcium.  PTH acts on the bone and kidneys.  In bone, it induces increased calcium 
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mobilization.  In the kidney, renal tubule reabsorption of calcium is increased, but more 

importantly, 25-hydroxyvitamin D is converted to 1,25-dihydroxyvitamin D, which acts on 

the intestine to increase dietary absorption.  Several factors can contribute to the failure of 

these homeostatic mechanisms.  Hypomagnesemia can contribute to the development of milk 

fever by inhibiting PTH signaling pathways.  Several of the enzymes in the PTH signaling 

pathway require Mg2+ for full function, thus, low blood magnesium can impair PTH 

signaling (Rude et al., 1998).  Metabolic alkalosis has also been shown to impair calcium 

homeostasis by reducing tissue sensitivity to PTH.  Alkalosis has been shown to reduce 

calcium mobilization from the bone due to increased osteoblastic activity and reduced 

osteoclastic activity (Bushinsky, 1996).  Reduced responsiveness of the kidney to PTH has 

been evidenced by reduced 1,25-dihydroxyvitamin D production relative to increases in PTH 

in cattle on a cationic diet. These diets increase the risk of milk fever due to induction of 

metabolic alkalosis (Goff et al., 1991).  It has been found that feeding anionic diets that 

induce a slight acidosis reduce the incidence of milk fever (Gaynor et al., 1989). Anionic 

diets have proven to be an effective preventative for hypocalcemia, and are associated with 

significantly higher serum calcium at calving (Goff et al., 1991, Phillippo et al., 1994).   

Displaced abomasum (DA) is another high priced metabolic disease of the transition 

period.  Cost per case is estimated at $250-400 depending on the procedure used to correct 

the problem (Bartlett et al., 1995).  In a normal cow, the abomasum sits on the ventral floor 

of the abdomen, to the right of the rumen.  Displacement of the abomasum occurs when gas 

collects in the abomasum, causing it to shift either to the left (LDA) or to the right (RDA) of 

the abdomen, with LDA being more common, particularly in the transition period (Constable 

et al., 1992).  The gas that accumulates in the abomasum is due to the reaction of bicarbonate 
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with HCl to produce CO2, as well as gas production from rumen contents entering the 

abomasum (Sarashina et al., 1990).   

There are a variety of reasons that DA are associated with the transition period.  

Ketosis, also common during the transition period, is a risk factor for DA (Curtis et al., 

1985).  There is also suggestion that upon delivery of the calf, a void is left in the abdomen, 

which may allow the abomasum to more easily become displaced (Constable et al., 1992, 

Ingvartsen and Andersen, 2000).  Although this may have some effect, it is not required for a 

DA, as DA can occur in young cattle and males.  Abomasal atony has also been associated 

with increased risk of DA (Constable et al., 1992).  High levels of VFA in the abomasum 

have been found to reduce abomasal motility in sheep (Gregory, 1987).  High grain or finely 

chopped diets may elevate levels of VFA entering the abomasum by reducing the rumen fiber 

mat, allowing grain to fall to the bottom of the rumen, where fermentation occurs and digesta 

can pass out of the rumen prior to VFA absorption (Ingvartsen and Andersen, 2000)  A 

higher energy close-up diet has been shown to both increase (Correa et al., 1990), and 

decrease (Curtis et al., 1985) the incidence of LDA.  This discrepancy may be due, in part, to 

higher than recommended levels of calcium and energy in close-up rations on farms studied 

by Correa et al. (Correa et al., 1990).  High forage dry cow diets have been shown to reduce 

the incidence of LDA (Coppock et al., 1972).  Reduced contractility of both the rumen and 

abomasum has been demonstrated in experimentally induced hypocalcemia (Daniel, 1983).  

Massey et al. found that cows with hypocalcemia are 4.8 times more likely to develop LDA 

than cows without hypocalcemia (Massey et al., 1993).  Administration of calcium chloride 

gels around the time of calving has been shown to both reduce (Oetzel, 1996) or not change 

(Hernandez et al., 1999) the incidence of LDA.  In the study by Hernandez et al. the calcium 
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gels did not affect serum calcium, whereas those used by Oetzel did (Hernandez et al., 1999, 

Oetzel, 1996).  

Retained placenta is diagnosed when the placenta is not expelled within 12-24 hours 

after calving.  The cause of retained placenta is currently unknown.  It is estimated that 

retained placenta occurs in 8.6 percent of lactations (Kelton et al., 1998), with older cows at a 

greater risk (Curtis et al., 1985, Markusfeld, 1987).  The reduced ability of the uterus to 

contract during hypocalcemia may also be a factor in retained placenta, as cow with milk 

fever have been shown to have greater incidence of retained placenta (Curtis et al., 1985, Erb 

et al., 1985).  Immune function and its suppression at the time of calving may also contribute 

to retained placenta.  Gunnick suggested a theory that the fetal membranes must be 

recognized as “foreign” by the immune system in order to be expelled.  This theory was 

backed by demonstration of reduced leukocytic activity and reduced chemotaxis toward a 

cotyledon preparation in cows that developed retained placenta (Gunnink, 1984a, Gunnink, 

1984b, Gunnink, 1984c).  In addition, Kimura et al. demonstrated reduced neutrophil 

function both pre- and postpartum in cows that developed retained placenta (Kimura et al., 

2002b).  Retained placenta has been shown to be a risk factor for metritis, an infectious 

disease common during the transition period (Coleman et al., 1985, Emanuelson et al., 1993).   

Infectious Disease in the Transition Cow 

In addition to the metabolic diseases that occur during the transition period, the 

immunosuppression experienced during this time period increases the incidence of infectious 

diseases such as metritis and mastitis.  Metritis is an inflammation of all layers of the uterus 

often due to bacterial infection.  Many factors predispose the cow to metritis including, 

dystocia and retained placenta (Bruun et al., 2002), induced parturition, stillbirth, and 
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multiple births (Markusfeld, 1984).  Uterine infection can occur due to a wide range of 

bacteria (Sheldon et al., 2002).  Many cows have bacterial contamination of the uterus 

postpartum, but the spike in progesterone at the first ovulation can suppress the immune 

system enough to allow contaminating bacteria to establish infection (Lewis, 2003, Olsson et 

al., 1998).  Uterine infection can damage uterine tissue, causing reduced reproductive 

efficiency both during and after infection (Bonnett et al., 1991).  In addition, uterine infection 

can further affect fertility by altering function of the ovary and endocrine system (Sheldon, 

2004).   

Mastitis, an inflammation of the udder, accounts for huge economic losses to the 

dairy industry.  Wells et al. reported the cost of clinical mastitis to be $1.5-2 billion annually, 

with an additional loss of $960 million due to subclinical infection (Wells et al., 1998).  

Mastitis is caused by a wide variety of organisms, including both contagious and 

environmental pathogens.  Some common mastitis pathogens include Escherichia coli, 

Staphylococcus aureus, and Streptococcus uberis, as well as coagulase-negative 

Staphylococcus, Mycoplasma, Serratia, Klebsiella, and Pseudomonas species to name just a 

few.  In order to cause mastitis, a pathogen must be able to enter and colonize the mammary 

gland.  The dairy cow has an intricate defense system in the udder that works well under 

most conditions to prevent this.  The first line of defense for the udder is at the teat canal, 

which is the primary site of entrance for mastitis pathogens.  Between milkings, the teat 

sphincter is closed with a keratin plug in place.  Milking removes the keratin plug and relaxes 

the sphincter muscle.  This relaxation can last for some time after milking, allowing a period 

of greater susceptibility to infection immediately after milking.  Within the gland, several 

non-cellular defenses are present, including lactoferrin, lactoperoxidase, and complement 
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components.  In addition, there is cellular surveillance of the mammary gland, primarily by 

macrophages (Paape et al., 2000).  Upon ingestion of a pathogen, the macrophage releases 

cytokines that recruit PMN and initiate an acute inflammatory response.   

Infection of the mammary gland with E.coli is usually cleared quite quickly, but in 

some cases, it can escalate into severe disease.  E. coli carries an endotoxin called 

lipopolysaccharide (LPS).  This LPS induces an acute inflammatory response that is 

responsible for many of the systemic symptoms of E. coli mastitis, including fever, lack of 

appetite, and dehydration.  These systemic symptoms are in addition to local signs of 

infection, including swelling of the udder, abnormal milk, and hardness of the udder.  E. coli 

infection is particularly prominent around the time of calving and its severity is thought to be 

primarily influenced by host factors (Burvenich et al., 2003).  One of the main characteristics 

of the cow that affects severity of infection is neutrophil recruitment and function.  Other 

immune factors also play a large role in severity.  It is for this reason that experimental E. 

coli infection can be utilized as a measure of host defense mechanisms as a whole.   

Transition Cow Nutrition 

The optimal energy content of the diet fed to the cow prior to calving is a 

controversial topic.  The trend over the last forty years has been to feed the cow a diet with a 

higher energy concentration than she requires, if she is consuming the expected amount of 

diet DM.  DMI is approximately 1.7% of heifer body weight and 1.9% of cow body weight 

(Hayirli et al., 2003).  The rationale for this strategy includes: 1. Adaptation of rumen 

microbes (Huntington et al., 1981) and rumen papillae (Dirksen and Liebich, 1985) to the 

type of high-energy diet the cow will receive in lactation; 2.  Maximizing dry matter intake 

prior to calving as this may be correlated to dry matter intake in early lactation (Grummer, 
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1995); and, 3. A diet with higher energy concentration may prevent the cow from going into 

negative energy balance just before calving when it is common to observe a marked decline 

in DM intake. This rationale is based on the premise that the dry matter intake depression just 

before calving would be similar in cows fed low and high energy diets during the final weeks 

of gestation, which may not be true (Beever, 2006, Grummer, 2008).  

Increasing the non-fiber carbohydrate content of a pre-partum ration will often 

increase dry matter intake across the entire three weeks of the close-up period (Emery et al., 

1969, Holcomb et al., 2001, Minor et al., 1998).  Increasing the energy content of the pre-

partum diet has also been reported in some studies to result in lower blood non-esterified 

fatty acid (NEFA) or B-hydroxybutyrate (BHBA) concentrations and lower liver triglyceride 

accumulation (Doepel et al., 2002, Mashek and Beede, 2000, Vandehaar et al., 1999).  

However, this approach does not generally increase DM intake after calving or increase milk 

production. There is also indirect evidence that supplying energy to the cow in excess of her 

needs may render her tissues less sensitive to insulin (Dann et al., 2006). Displacement of the 

abomasum is also promoted whenever the NFC content of the diet is increased, unless great 

care is taken to maintain physically effective fiber content of the ration (Coppock, 1974).  

When higher energy diets are fed for a period exceeding 5-6 weeks prior to calving the cows 

may also gain excess body condition.  Data also suggest increasing energy density of pre-

partum diets may lead to a greater decline of DM and energy intake in the 2-4 days before 

calving, i.e. the number of kg/d by which DM intake is depressed just before calving may be 

greater in cows on the higher energy diets (Hayirli et al., 2002, Ingvartsen and Andersen, 

2000, Minor et al., 1998, Olsson et al., 1998). Retrospective evidence suggests those cows 

suffering a bigger change (# kg) in DM intake just before calving will be at greater risk of 
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energy related disease (Grummer et al., 2004).  Studies on periparturient immune function 

also suggest those cows suffering the greatest decline in feed intake just before calving are 

most immune suppressed, leading to increased incidence of metritis and endometritis 

(Hammon et al., 2006, Urton et al., 2005).  If intake during the week before and after calving 

is critical to avoidance of fatty liver-ketosis and improved immune function-how do we best 

feed the cow to achieve this?   

The purpose of this study was to test the hypothesis that metabolic profiles, milk 

production, and immune function would be improved by feeding heifers a diet that met but 

did not exceed their energy requirements during the last 5 weeks before calving, as opposed 

to a diet that exceeded their energy requirement.  Heifers sometimes have larger problems 

with energy balance than do older cows, especially if their body condition is excessive 

(Melendez et al., 2006).  They eat less on a body weight basis (Hayirli et al., 2002) and, 

because they are still growing, they have higher energy requirements / kg body weight (NRC, 

2001).  They have minimal problems with hypocalcemia at calving, a factor which can 

reduce DM intake in older cows around the time of calving confounding interpretation of 

DM intake depression in older animals (Marquardt et al., 1977).  
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EFFECT OF ENERGY CONTENT OF PRE-PARTUM DIET ON  
DRY MATTER INTAKE AND METABOLIC PARAMETERS OF 

PERIPARTURIENT DAIRY COWS  
 

A paper to be submitted to the Journal of Dairy Science 
 

H. R. Springer and J. P. Goff 
 

 
INTERPRETIVE SUMMARY 

 
Pre-partum diet energy and metabolic status of heifers.  Heifers were fed a HIGH E (1.56 

Mcal NE(L) /kg) or LOW E energy (1.35 Mcal NE(L)/kg) diet the last five wk of gestation.  

Dry matter intake the last three wk of gestation was 1.2 kg / d greater in the cows fed HIGH 

E diet but this did not result in higher DMI after calving.  Milk production, liver triglyceride 

content, and days to first ovulation were similar in both groups of cows.  Feeding a high 

energy diet in late gestation does not offer any benefits over feeding a lower, but adequate 

energy diet to heifers.   

 
ABSTRACT 

 
Over the last 40 years the trend on dairies has been to increase the energy content of the pre-

partum ration to enhance DMI during the final weeks of gestation and prepare the rumen for 

the higher energy diets of lactation.  In the last few years a number of dairies have shifted to 

a completely different dietary strategy; feeding a lower energy diet, which utilizes straw as a 

major component of the diet.  The objective of this study was to determine if the institution 

of a lower energy pre-partum diet had any negative effects on metabolic status of cows when 

compared to cows fed a higher energy pre-partum diet. Primiparous heifers were assigned to 

either a HIGH E diet (1.56 Mcal NE(L) / kg) or a LOW E diet treatment (1.35 Mcal 

NE(L)/kg diet) about five wks before calving.  DMI was 1.2 kg/d greater in the HIGH E 
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cows in the three weeks prior to calving. The LOW E diet did reduce the magnitude of DMI 

depression just before calving, but apart from a small reduction in plasma non-esterified fatty 

acid concentraion (NEFA) the day of calving, few major benefits of this reduction were seen.  

DMI after calving was similar in the two groups of cows.  Body condition scores of the cows 

just before calving and at 21 and 44 DIM were statistically similar across the dietary 

treatments.  A glucose tolerance test was performed on a subset of animals in each dietary 

treatment about one week prior to calving.  No statistically significant difference was 

observed in glucose clearance from the blood or insulin secretion pattern suggesting no 

difference in tissue sensitivity to insulin was induced by the dietary treatments.  Milk 

production during the first 45 days of lactation was statistically similar in HIGH E (27.1 

kg/d) and LOW E cows (28.2 kg/d).  Dietary treatment had no significant effect on liver 

triglyceride content on day 1 after calving, days to first ovulation, or plasma NEFA profile 

after calving. Feeding a high energy diet prior to calving offers no advantages to health or 

production over a lower energy diet. The utilization of a low energy density diet to limit 

energy intake pre-partum is not detrimental to the dairy heifer. 

Key Words: straw diet • pre-partum diet • transition cow, NEFA 

INTRODUCTION 

The optimal energy content of the diet fed to the cow prior to calving is a 

controversial topic.  The trend over the last forty years has been to feed the cow a diet with a 

higher energy concentration than she requires, if she is consuming the expected amount of 

diet DM.  DMI is approximately 1.7% of heifer body weight and 1.9% of cow body weight 

(Hayirli et al., 2003).  The rationale for this strategy includes: 1. Adaptation of rumen 

microbes (Huntington et al., 1981) and rumen papillae (Dirksen and Liebich, 1985) to the 
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type of high-energy diet the cow will receive in lactation; 2.  Maximizing dry matter intake 

prior to calving as this may be correlated to dry matter intake in early lactation (Grummer, 

1995); and, 3. A diet with higher energy concentration may prevent the cow from going into 

negative energy balance just before calving when it is common to observe a marked decline 

in DM intake. This rationale is based on the premise that the dry matter intake depression just 

before calving would be similar in cows fed low and high energy diets during the final weeks 

of gestation, which may not be true (Beever, 2006, Grummer, 2008).  

Increasing the non-fiber carbohydrate content of a pre-partum ration will often 

increase dry matter intake across the entire three weeks of the close-up period (Emery et al., 

1969, Holcomb et al., 2001, Minor et al., 1998).  Increasing the energy content of the pre-

partum diet has also been reported in some studies to result in lower blood non-esterified 

fatty acid (NEFA) or β-hydroxybutyrate (BHBA) concentrations and lower liver triglyceride 

accumulation (Doepel et al., 2002, Mashek and Beede, 2000, Vandehaar et al., 1999).  

However, this approach does not generally increase DM intake after calving or increase milk 

production. There is also indirect evidence that supplying energy to the cow in excess of her 

needs may render her tissues less sensitive to insulin (Dann et al., 2006). Displacement of the 

abomasum is also promoted whenever the NFC content of the diet is increased, unless great 

care is taken to maintain physically effective fiber content of the ration (Coppock, 1974).  

When higher energy diets are fed for a period exceeding 5-6 weeks prior to calving the cows 

may also gain excess body condition.  Data also suggest increasing energy density of pre-

partum diets may lead to a greater decline of DM and energy intake in the 2-4 days before 

calving, i.e. the number of kg/d by which DM intake is depressed just before calving may be 

greater in cows on the higher energy diets (Hayirli et al., 2002, Ingvartsen and Andersen, 
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2000, Minor et al., 1998, Olsson et al., 1998). Retrospective evidence suggests those cows 

suffering a bigger change (# kg) in DM intake just before calving will be at greater risk of 

energy related disease (Grummer et al., 2004).  Studies on periparturient immune function 

also suggest those cows suffering the greatest decline in feed intake just before calving are 

most immune suppressed, leading to increased incidence of metritis and endometritis 

(Hammon et al., 2006, Urton et al., 2005).  If intake during the week before and after calving 

is critical to avoidance of fatty liver-ketosis and improved immune function-how do we best 

feed the cow to achieve this?   

The purpose of this study was to test the hypothesis that metabolic profiles and milk 

production would be improved by feeding heifers a diet that met but did not exceed their 

energy requirements during the last 5 weeks before calving, as opposed to a diet that 

exceeded their energy requirement.  In a companion paper, the effect of these diets on 

periparturient immune function and disease resistance will be examined.  Heifers sometimes 

have larger problems with energy balance than do older cows, especially if their body 

condition is excessive (Melendez et al., 2006).  They eat less on a body weight basis (Hayirli 

et al., 2002) and, because they are still growing, they have higher energy requirements / kg 

body weight (2001).  They have minimal problems with hypocalcemia at calving, a factor 

which can reduce DM intake in older cows around the time of calving confounding 

interpretation of DM intake depression in older animals (Marquardt et al., 1977).  

MATERIALS AND METHODS 

Animals and Dietary Treatments 

 All procedures performed on the animals were approved by the Animal Care and Use 

Committee of the USDA National Animal Disease Center.  Twenty-Four heifers in their 3rd-
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5th month of pregnancy were purchased from a single source and maintained on 15% crude 

protein, hay-corn silage growing heifer diet in an open lot.  At 9-15 weeks prior to calving 

cows were brought into a free stall barn equipped with fans over the feed lane and over free 

stalls that were bedded with sand.  Cows were fed behind Calan gates (American Calan, 

Northwood, NH) to which they were trained and well acclimated by at least 9 wk prior to 

calving.  At 6 wk prior to expected median date of calving, all heifers were immunized with 

107 colony forming units of attenuated Mycobacterium bovis BCG strain Pasteur 

subcutaneously in the mid-cervical region of the neck to allow later assessment of in vitro 

recall response of peripheral blood mononuclear cells to M. bovis purified protein derivative 

(Pfizer, Kalamazoo, MI) (Foote et al., 2007) (see companion paper).  Actual calving date 

ranged from 5 to 12 wks after vaccination. One heifer aborted the day after vaccination and 

was removed from the study.  The remaining heifers were split into two groups taking care to 

have an even distribution of BCS across the two groups.  Cows were scored for body 

condition using a 5-point scale (Ferguson et al., 1994). Three observers scored each cow to 

within 0.25 of a body condition score and the average score from these observations is 

reported.  Body condition score (BCS) was assessed at time of blocking into treatment 

groups and frequently during the experimental period.  Results are reported for the last week 

before calving and at 21 + 2 and 44 + 3 days in lactation.  At 5 wk before expected calving 

date (based on palpation of the reproductive tract) until calving the cows were fed ad libitum 

either a low energy, high straw (LOW E) diet with net energy for lactation (NE(L)) of 1.35 

Mcal/kg DM or a high energy, corn silage-grass hay (HIGH E) diet with NE(L) of 1.56 

Mcal/kg DM (Table 1).  Both groups were fed the low energy diet from 9-15 wk prior to 

calving until about 5 wk prior to calving.  After calving, all cows received the same lactation 
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ration balanced to support 34 kg daily milk production (NRC, 2001).  Milk production and 

feed intake were recorded daily.  Cows were milked twice a day and were fed behind the 

same Calan gate during the pre-partum and lactating periods.  They were moved to maternity 

pens bedded with straw adjacent to the free stall area when calving was imminent (within 12 

hrs) and were offered their assigned pre-partum diet while in the maternity pens.  Cows were 

moved back to the free stall and their Calan gate within 12 hrs after calving after their first 

milking.   

 Jugular vein blood samples were collected from all cows on a daily basis beginning 

about 3 weeks prior to calving and extending into the first 8 weeks after calving to develop a 

metabolic profile of the cows, determine date of first ovulation, and for assessment of 

immune system status (described in a companion paper).  

On day 5 after calving all cows were experimentally infected in one quarter of the 

mammary gland with Escherichia coli as a means of assessing immune competence.  The 

details of this bacterial challenge and the results of the study are reported in the companion 

paper.   

Glucose Tolerance Test 

A subset of cows on each dietary treatment was subjected to an intravenous glucose 

tolerance test.  Our intention was to test glucose disappearance and insulin secretion response 

in cows that had been fed the experimental diets for at least four wks but not to test any cow 

that appeared to be within 3 d of calving.  Six cows from the HIGH E and nine cows from the 

LOW E diets fit these parameters and underwent a glucose tolerance test.  The cows were 

placed into headlocks prior to the morning feeding and body weight estimated based on heart 

girth.  Blood samples were taken at 0, 15, 30, and 75 min prior to administration of glucose.  
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An indwelling catheter was placed into the left jugular vein and glucose was infused so that 

each cow received 50 mg glucose / kg BW over a ten minute period.  Blood samples were 

then obtained from the contralateral jugular vein at 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 

150 and 180 min after infusion for determination of blood glucose and insulin concentrations.  

Blood glucose concentrations were determined by a colorimetric method based on glucose 

oxidase (Trinder, 1969) and adapted to microtiter plates.  Insulin was determined by 

radioimmunoassay (Coat-A-Count Insulin, Diagnostic Products Corp., Los Angeles, CA).  

Liver Biopsy  

Between 12 and 24 hrs after calving approximately 120 mg of liver tissue was 

harvested by percutaneous biopsy of the liver. Each cow was sedated with 20 mg xylazine 

and anesthetized by local infiltration of 2% lidocaine into the skin and subcutaneous tissues 

of the 10th intercostal space on the right side of the cow.  A stab incision was made through 

the skin and intercostal muscles. The liver was biopsied 6-9 times with a six inch 14 G Tru-

Cut biopsy needle (Allegiance Healthcare Corp, McGaw Park, IL). Each needle insertion 

yielded 15-20 mg liver tissue.  The incision was closed with a single suture.  No post biopsy 

complications (fever, abnormal swelling etc.) were observed in any of the cows. Liver 

samples were rinsed by dipping in saline, blotted dry and placed into pre-weighed 

polyethylene cryotubes and kept on ice until transport to the lab where they were maintained 

at -80 C until analysis.  Liver sample triglyceride (TG) and DNA content were determined 

and the results are expressed as µg TG / µg DNA.  Briefly, each liver sample was 

homogenized in 2ml phosphate buffered saline.  A 100 ul aliquot of this homogenate was 

removed for determination of sample DNA content.  TG was extracted from the remaining 

homogenate with 2 ml chloroform:methanol (2:1).  The chloroform phase was isolated and 
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placed into a second tube. This step was performed two more times and the chloroform 

extracts combined into a single test tube and dried to completion under nitrogen in a vacuum 

hood.  The triglyceride content was determined by enzymatic lipolysis of the triglycerides to 

glycerol and fatty acids, followed by colorimetric determination of glycerol concentration 

which involves a series of reactions between glycerol, ATP, 4-aminoantipyrine and sodium 

N-ethyl-N-(3-sulfopropyl) m-anisidine to form quinonimine dye which absorbs light 

maximally at 540 nm (Sigma kit TR0100, Sigma Chemical Co, St Louis, MO).  DNA 

concentration in the homogenate was determined using Hoechst 33258 (Sigma Chemical Co., 

St Louis, MO), a fluorochrome that intercalates with DNA specifically to produce 

enhancement of fluorescence, providing a method to quantify DNA in the presence of RNA 

(Labarca and Paigen, 1980).  

Plasma Analytical Methods 

 Plasma calcium and magnesium concentrations were determined by atomic 

absorption spectrophotometry (Perkin Elmer, 1965).  Plasma NEFA (NEFA-C; Wako Pure 

Chemical Industries, Osaka, Japan) (Johnson and Peters, 1993), B-hydroxybutyrate (BHBA) 

(BHBA dehydrogenase, kit 310-UV; Sigma Chemical, St Louis, MO) (Williamson et al., 

1962) and blood urea nitrogen (BUN) (Sigma kit 640, Sigma Chemical, St Louis, MO) 

concentrations were determined by colorimetric assays adapted to microtiter plates.  Plasma 

progesterone was determined by radioimmunoassay (Coat-a-Count Progesterone, Diagnostic 

Products Corp., Los Angeles, CA).  A cow was considered to have ovulated the day before 

plasma progesterone exceeded 1 ng/ml.  Plasma α-tocopherol, retinol, and β-carotene 

concentrations were determined by high performance liquid chromatography (Catignani and 

Bieri, 1983). 
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Statistical Analysis 

 Data were analyzed using a repeated measures analysis of variance  (PROC 

MIXED)(SAS, 1999, Littell et al., 1998).  The model included the fixed effects of treatment 

(HIGH E vs. LOW E Diet), day relative to parturition, and treatment x day interaction, the 

random effect of cows nested within treatment, and the residual error. For each variable 

analyzed, cow nested within treatment was subjected to three covariance structures: 

compound symmetry, autoregressive order 1, and unstructured covariance. The covariance 

that resulted in the Akaike’s information criterion closest to zero was used. Means and SEM 

are reported for all data. When significant effects (P < 0.05) due to treatment, day, or 

treatment x day interactions were detected, means separation was conducted by the Tukey-

Kramer option in SAS. Data were also split into two periods: before calving (days equal to or 

less than 1) and after calving (days greater than 0). DM intake data was also subjected to a 

separate analysis consisting of just the immediate pre-calving period – comprised of the last 3 

days of gestation to assess the extent of the DM intake depression in each treatment group. 

Data analyses were conducted as described above for the two periods to determine significant 

effects.  Data obtained during the glucose tolerance test were analyzed in a separate but 

similar model, with time relative to glucose infusion utilized in place of day relative to 

parturition.  

RESULTS AND DISCUSSION 

General Health 

 Three animals placed in the HIGH E group failed to complete the study.  One heifer 

assigned to the HIGH E group delivered a stillborn, small calf the day after BCG vaccination, 

prior to the initiation of diet treatment. The smallest heifer in the HIGH E group could not 
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deliver a calf without a Caesarian section and was removed entirely from the study.  A 

second heifer on the HIGH E diet developed severe udder edema on the second day after 

calving, which eventually led to mastitis.  Her data obtained prior to the day of calving 

remain in the data set but upon calving she was removed from the study as she was treated 

for udder edema with furosamide.  One heifer on the HIGH E diet was given a glucose 

infusion on day 10 after calving for treatment of mild ketosis and she recovered uneventfully 

and was left in the data set. All the other cows had no demonstrable health issues prior to 

infection of the mammary gland or any disorders following recovery from the experimental 

mastitis induction. The size of the data set precludes any inference about the effects of the 

diet on overall health of the animals. 

Effects of Diet on DMI and Metabolic Parameters from Three Wks Pre-Partum to Four 

Days Pre-Partum 

Increasing the energy density of the pre-partum diets will generally increase DMI 

across the last three wks of gestation (Emery et al., 1969, Holcomb et al., 2001, Minor et al., 

1998, Rabelo et al., 2003, Vandehaar et al., 1999). Our results were consistent with these 

studies. The HIGH E group consumed 12.2 kg DM /d during this period, which was 1.2 kg/d 

greater than cows fed the LOW E diet who consumed 11.0 kg DM /d (Fig 1.).  Therefore, the 

HIGH E cows consumed 19.0 Mcal NE(L)/ day while cows fed the LOW E diet consumed 

14.9 Mcal NE(L) / d.  The energy requirement for these cows is approximately 12 Mcal 

NE(L) / d (2001), so cows on the LOW E diet still received energy beyond their requirement.  

Elevated blood NEFA concentrations during this period may be predictive of cows 

with increased risk of developing displaced abomasum (Cameron et al., 1998, LeBlanc et al., 

2005) and retained placenta (Conner et al., 2001), and increased risk of being culled in early 
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lactation (Duffield, 2007). In the Minor et al., (Minor et al., 1998), Rabelo et al., (Rabelo et 

al., 2003) and VandeHaar et al., (Vandehaar et al., 1999) studies, increasing the energy 

content of the pre-partum diet reduced blood NEFA concentrations prior to calving.  Plasma 

NEFA concentrations of the HIGH E cows between -22 d and -4 d (0.15 + 0.02 M) were 

lower (P < 0.05) than in LOW E cows during this period (0.21 + 0.02 M) (P < 0.02) (Fig. 2), 

but in both groups of cows the NEFA concentrations were well below the suggested close-up 

cow critical NEFA level of 0.4 -0.5 M that would predict cows “at-risk” for metabolic 

disorders  (Duffield, 2007, Van Saun, 2006).  

 The glucose tolerance test results show a similar zenith in blood glucose 

concentration was achieved in both groups of cows at the cessation of glucose infusion.  The 

rate at which blood glucose concentration returned to normal was similar in both groups of 

cows (Fig 3).  Though there is a trend toward increased insulin secretion in cows fed the 

HIGH E diet, plasma insulin secretion was stimulated by the glucose infusion to similar 

degrees across the dietary treatments (P = 0.28).  Reduced tissue sensitivity to insulin has 

been demonstrated in cows with high BCS and is suspected to play a role in susceptibility of 

the transition cow to metabolic disease (Holtenius and Holtenius, 2007, Rukkwamsuk et al., 

1998). Overfeeding dairy cows during the pre-partum period may accentuate insulin 

resistance in adipose tissue, leading to increased NEFA mobilization, lower DMI, and greater 

risk for lipid-related metabolic disorders (Holtenius et al., 2003). Our data do not support the 

theory that dietary energy fed to the cow can affect insulin sensitivity of the tissues, perhaps 

because BCS was similar in the two groups of cows at calving or perhaps we did not have 

enough animals in the study. Approximately one week before calving, the BCS of cows fed 

the HIGH E diet averaged 3.65 + 0.15 and 3.56 + 0.08 in the LOW E cows.  
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 Plasma BUN concentration was significantly higher in LOW E cows prior to calving 

than in HIGH E cows (P<0.05) (Fig. 4).  Since dietary protein concentrations were 

comparable and DMI was higher in the HIGH E cows, the LOW E cows might be expected 

to have lower BUN concentration as the total nitrogen entering the rumen should have been 

lower. However, a likely explanation is that the rumen degradable protein nitrogen entering 

the rumen of the LOW E cows is not incorporated into microbial protein very well because of 

the lack of starch or other readily fermentable carbon sources in the rumen.  This nitrogen 

enters the blood as ammonia and is converted to urea in the liver, raising BUN.  The NRC 

(2001) model predicted that these diets would supply similar amounts of metabolizable 

protein to the cows, assuming similar DMI (Table 1).  However, since BUN levels are higher 

in the LOW E cows these data suggest the NRC model overestimates the contribution of the 

LOW E diets to metabolizable protein.  It may be necessary to provide more dietary rumen 

undegradable protein to meet the metabolizable protein requirements of the dry cow fed a 

LOW E diet.  There were no apparent ill-effects from this reduced availability of 

metabolizable protein on the LOW E diet.   

Effects of Diet on DMI and Metabolic Parameters during the Immediate Close-Up 

Period (Three d Pre-Partum to Calving) 

 DMI decreased in both groups of cows during the last week of gestation.  However, 

there was a significant day X treatment interaction in DMI during the last 3 days of gestation.  

The HIGH E cows were consuming 12.1 + 0.6 kg DM on Day -3 and just 9.9 + 0.6 kg DM 

the day before calving.  The LOW E cows were consuming 10.4 + 0.6 kg DM on Day -3 and 

10.3 + 0.6 kg DM the day before calving.  The cows fed the HIGH E diet had a significant 

reduction of 2.2 kg DMI/ d or 18% in the last 3 days of gestation, while LOW E cows 
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maintained their intake through this period.  Total DMI the last three days of gestation was 

33.8 kg in HIGH E cows and 31.5 kg in LOW E cows.   

 NEFA concentrations rose rapidly the day of calving in both groups and were 0.45 M 

in HIGH E cows and 0.36 M in LOW E cows.  This represented a 3-fold NEFA 

concentration increase in HIGH E cows and a 1.7-fold increase in LOW E cows from the 

average value observed across the period from 3 wks to 3 days prior to calving. 

The depressed DMI during the final days of gestation observed in the cows fed the 

HIGH E diet parallels the pattern of DMI seen in many previous studies (Bertics et al., 1992, 

Grummer et al., 2004, Hayirli et al., 2002, Marquardt et al., 1977).  Grummer et al., (2004) 

suggested that the degree of depression in DMI at the time of calving may have a more 

significant effect on postpartum performance than the level of DMI itself.  The same authors 

went on to suggest that higher pre-partum DMI may actually promote a greater magnitude of 

DMI depression when compared to cows with lower pre-partum DMI.  They also suggest the 

delta change in DMI during the final days of gestation may act as a stimulus for the 

mobilization of fat from adipose tissue.  Our data support this argument.  The HIGH E group 

had both higher pre-partum DMI and a greater degree of DMI depression at the time of 

calving, even though they were consuming more energy the final day of gestation than the 

LOW E cows on that day (15.4 Mcal vs 13.9 Mcal NE(L)).  And, at least on the day of 

calving, the cows fed the HIGH E diet had higher NEFA concentrations in their blood than 

the LOW E cows.  It appears that the trigger for body fat mobilization has less to do with 

absolute energy intake than it does with intake relative to the previous day or days intake of 

energy.  
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Effects of Diet on DMI and Metabolic Parameters Post-Calving  

 DMI increased after calving in cows in both diet treatments at a similar rate.  The 

intramammary E.coli challenge affected both groups of cows to a similar degree and the rate 

of recovery of DMI after challenge was similar.  Other aspects of the immune response to the 

E. coli challenge are described in a companion paper. Despite the E.coli challenge, DMI 

across the first 40 d of lactation was 16.0 kg /d in the HIGH E cows and 15.75 kg /d in LOW 

E cows.   

Plasma NEFA concentration increased slightly above calving levels in both groups 

the first two days of lactation but were on the decline at the time of the E.coli intramammary 

challenge.  There was no statistically significant difference across the dietary treatments.  

Because the mastitis challenge was expected to depress DMI no further determinations of 

NEFA were performed. The combination of movement in and out of the maternity pen, 

lactation diet, liver biopsy, and initiation of milk production likely contributed to the rise in 

NEFA in both groups after calving, though the average remained well below levels that 

would be considered indicative of severe negative energy balance in both groups of cows. 

The triglyceride content of the liver, determined in the biopsies obtained the day after 

calving, was similar in both groups of cows. In some studies, increasing the energy content of 

the pre-partum diet also increased glycogen and/or reduced the triglyceride levels in the liver 

around the time of calving, factors which should have reduced the risk of development of the 

fatty liver ketosis complex (Doepel et al., 2002, Minor et al., 1998, Vandehaar et al., 1999).  

In our study, liver triglycerides at calving were relatively low in all cows (0.57 and 0.58 µg 

triglyceride/ µg DNA for the HIGH E and LOW E cows respectively) and there was no effect 

of diet, consistent with the findings of Rabelo et al., (Rabelo et al., 2005).  Our two internal 
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lab standard livers, obtained from cows diagnosed with clinical fatty liver, were found to 

have 1.77 and 1.95 µg triglyceride/ µg DNA.  Plasma BHBA concentrations at 4 DIM were 

similar across dietary treatments (HIGH E – 8.1 + 0.6 mg/dl and LOW E – 8.6 + 0.5 mg/dl).  

Examining BHBA at time points between 7 and 14 DIM is generally felt to be more 

informative of the degree of negative energy balance experienced by the cow; however the 

intra-mammary challenge with E.coli was felt to be a factor that would render interpretation 

of BHBA at these later DIM meaningless.  Plasma BUN concentrations were similar in cows 

fed the HIGH E and LOW E diets during the lactation phase of the study, when they were fed 

the same diets.  

Milk production was similar in both groups of cows (Fig. 5).  There was no effect of 

diet on days to first ovulation, which was 24 and 30 DIM for the HIGH E and LOW E cows 

respectively (P= 0.27) (Fig. 5).  

Other Dietary Effects across the Entire Experimental Period 

Plasma concentrations of α-tocopherol, retinol, and β-carotene were not statistically 

different across the dietary treatments.  All three compounds exhibited a significant decline 

around the time of calving followed by a recovery over the first two weeks of lactation, as 

reported in other studies (Goff and Stabel, 1990, Weiss et al., 1990).  Similarly, plasma Ca 

and Mg concentrations did not differ across dietary treatments though there was a significant 

sub-clinical decline in plasma Ca concentration in the first few days of lactation in both 

groups (Fig. 4).  Plasma P concentration also declined in both groups of cows on the first few 

days of lactation, and the decline was greater in cows fed the HIGH E diet (P < 0.05) (Fig. 4).  

The mineral levels were not low enough to cause noticeable clinical symptoms.   
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 Several research groups report maximizing DMI or energy intake during the close-up 

period improves post-partum intake and performance (Dann et al., 1999, Doepel et al., 2002, 

Mashek and Beede, 2000, Minor et al., 1998, Rabelo et al., 2003, Vandehaar et al., 1999). In 

contrast, several studies provide evidence that restricting energy intake during either the 

entire dry period (Agenas et al., 2003, Douglas et al., 2006, Holtenius et al., 2003, Tesfa et 

al., 1999) or the close-up period (Holcomb et al., 2001) to levels at or even below NRC 

requirements (2001) has no negative impact on postpartum DMI.  Our results also suggest 

that higher DMI pre-partum, which was associated with the higher energy diet, does not lead 

to greater DMI in early lactation.  

The two diets had similarly successful outcomes postpartum. The management 

conditions utilized in this trial may have contributed.  In this study, heifers were housed in an 

un-crowded barn (about 1.2 free stalls per heifer), and were given sole access to their 

respective diets via Calan gates which provided 0.82 M bunk space / cow.  On commercial 

dairies the cows rarely have this much space. Increased stocking density is associated with an 

increased number of displacements from the feed bunk (Huzzey et al., 2006), reduced feed 

intake (Grant, 2007), and reduced ability to rest comfortably (Krawczel et al., 2008). Age, 

height, and weight have been positively correlated with increasing social standing, thus, 

heifers are more likely to be of lower social standing in mixed parity groups (Arave and 

Albright, 1976).  Lower social standing has been associated with more frequent displacement 

from post-and-rail feed bunks (Huzzey et al., 2006). In this study the heifers were housed 

away from cows on the dairy, avoiding another common stressor on commercial dairies.  

Movement of dairy cattle into different pens or groups of cows during the transition period is 

a common practice. Altered social group has been associated with an increased number of 
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displacements from the feed bunk and decreased feeding time (von Keyserlingk et al., 2008). 

Throughout the duration of this study, there were no changes in social groups. The 

management conditions of this study eliminated many of the social and behavioral challenges 

the heifer can face under typical management conditions.   

Both low and high energy density diets were successful under the conditions of this 

study.  The decision to implement a low or high energy pre-partum diet must take into 

account the specific management practices of the dairy and how these will affect feed 

availability for heifers.  It is something of a misnomer to refer to the straw based diet utilized 

in this study as a low energy diet. It did provide adequate energy to the cows.  Providing 

adequate, but not excessive energy, in late gestation has been instituted successfully on 

dairies and has been reported to improve health of the cows when compared to the higher 

energy pre-partum diets (Beever, 2006, Drackley and Janovick Guretzky, 2007).  Further 

studies should focus on the interaction between diet energy and health in older cows and 

under typical commercial conditions, where over-crowding and cow movement in and out of 

pens are common stressors that might further impact feed intake around the time of calving.  

The use of a low potassium straw to achieve a LOW E pre-partum diet does offer an 

opportunity to reduce dietary cation-anion difference to a greater extent than is possible with 

most other forages.  However, it does require reduction of the straw to a small average 

particle size, approximately 6 cm, to effectively prevent the cows from sorting the ration.   

CONCLUSIONS 

 Over the last 40 years the trend on dairies had been to increase the energy content of 

the pre-partum ration to enhance DMI during the final weeks of gestation.  In the last few 

years a number of dairies have shifted to a completely different dietary strategy, which 
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utilizes straw as a major component of the diet to limit total energy content consumed by the 

cow.  In this study, the LOW E and the HIGH E diets had similar outcomes in terms of milk 

production and time to first ovulation and were successful in limiting health problems 

through the transition period.  The LOW diet did reduce the magnitude of DMI depression 

just before calving, but apart from a small reduction in NEFA the day of calving, few major 

benefits of this reduction were seen. With optimal management, the utilization of a low 

energy density diet to limit energy intake pre-partum is not detrimental to the dairy heifer 

despite her relatively greater energy needs compared to the multiparous cow.   
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Table 1.  Composition of experimental HIGH and LOW Energy diets fed prior to calving and 
the lactation diet fed to all cows after calving.   
 HIGH Energy LOW Energy Lactation 
Ingredient (% DM)    

Corn silage 40.3 9.6 24.8 
Grass hay, late mat. 34.5 19  
Wheat straw  43 2.6 
Soybean meal, solv. 44% CP 17.2 20.4 6.9 
Legume forage hay, mid-mat.   21.7 
Corn grain, ground, dry   20.5 
Expellers soybean meal1   9.3 
Soybean hulls   9.4 
Chloride anion supplement2 3.4 3.4  
Molasses, sugarcane 2.1 2 1.9 
Yeast3 0.71 0.52 0.43 
Calcium sulfate (2 H2O, 74% CaSo4) 0.41 0.69  
Calcium phosphate (Di-) 0.52 0.74 0.28 
Calcium carbonate   0.35 
Potassium carbonate   0.35 
Sodium bicarbonate   0.43 
Magnesium oxide 0.09 0.26 0.32 
Magnesium sulfate (7 H2O, Epsom salts) 0.36   
Salt 0.3 0.28 0.35 
Dry cow vitamin-trace mineral4 0.11 0.11  
Lactating cow vitamin-trace mineral5   0.39 

    
Nutrient profile (% DM)     

Crude protein  14.9 15 17.9 
NDF  43.5 56.1 32.9 
ADF  28.1 34.6 22 
Fat  2.4 1.8 3.2 
NFC  34.8 20.7 40.7 
Ca  0.71 0.8 0.85 
Phos  0.44 0.38 0.4 
Magnesium  0.38 0.4 0.43 
Chloride  0.9 0.62 0.51 
Potassium 1.52 1.1 1.74 
Sodium 0.15 0.15 0.33 
Sulfur 0.34 0.31 0.26 
DCAD (mEQ/kg DM)6 -12 -23 286 

    
NRC 2001 protein and energy7    

Metabolizable protein (g/d) 1018 1011 2080 
NEl (Mcal/kg)  1.56 1.35 1.66 

1. SoyPLUS, West Central, Ralston, IA 
2. SoyChlor, West Central, Ralston, IA 
3. Diamond V XP, Cedar Rapids, IA 
4. Supplied trace minerals in amounts that met or exceeded NRC absorbed requirement plus 80,000 IU vitamin 

A (retinyl acetate), 20,000 IU vitamin D3, and 1500 IU vitamin E (tocopheryl acetate) 
5. Supplied trace minerals in amounts that met or exceeded NRC absorbed requirement plus 120,000 IU 

vitamin A (retinyl acetate), 30,000 IU vitamin D3, and 1800 IU vitamin E (tocopheryl acetate) 
6. DCAD = (Na + K) – (Cl + S) 
7. As predicted from the NRC 2001 model utilizing a 544 kg heifer in late gestation consuming 10.6 kg DM/d 

or an early lactation cow consuming 17.7 kg DM/d.  
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Table 2.  Effect of Pre-partum diet energy concentration on body condition score, days to 
first ovulation, and liver triglyceride content of primiparous cows. 
 
 HIGH Energy 

(1.56 Mcal/kg DM) 
LOW Energy 

(1.35 Mcal/kg DM) 
 

Body condition score    
     Last wk gestation 3.65  + 0.15 3.56  + 0.08  
     ~21 days in milk 3.33  + 0.11 3.12  + 0.08  
     ~44 days in milk 3.44  + 0.17 3.14  + 0.12  
    
Days to first ovulation 24.6  + 3.1 30.0  + 3.4  
    
Liver Triglyceride content  0.57  + 0.08 0.58  + 0.11  
(µg triglyceride/ µg DNA)    
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Figure 1 – Mean and SEM prepartum (A) and postpartum (B) dry matter intake in LOW E 
(●) and HIGH E (○) groups.  
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Figure 2 – Mean and SEM concentrations of plasma non-esterified fatty acids in LOW E (●) 
and HIGH E (○) groups as measured by colorimetric assay.  
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Figure 3 – Mean and SEM concentrations of (a) plasma glucose as measured by colorimetric 
assay and (b) plasma insulin as measured by radioimmunoassay in LOW E (●) and HIGH E 
(○) groups following a 50 mg/kg glucose infusion.  

 

A

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

G
lu

co
se

 (
m

g/
dl

)

B

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

Min. After Glucose Infusion

P
la

sm
a 

In
su

lin
 (µ

IU
/m

l)



www.manaraa.com

41 

 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Mean and SEM 
concentrations of (A) serum 
calcium, (B) serum magnesium, 
and (C) serum phosphorus as 
determined by atomic 
absorption, and (D) blood urea 
nitrogen as determined by 
colorimetric assay in LOW E (●) 
and HIGH E (○) groups during 
the periparturient period. 
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Figure 5 – Mean and SEM of milk production in LOW E (●) and HIGH E (○) groups.  
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EFFECT OF ENERGY CONTENT OF PRE-PARTUM DIET ON  
IMMUNE FUNCTION OF PERIPARTURIENT DAIRY COWS AND  
RESPONSE TO INTRAMAMMARY BACTERIAL CHALLENGE 

 
A paper to be submitted to the Journal of Dairy Science 

 
H. R. Springer, D.D. Bannerman, B.J. Nonnecke, and J. P. Goff 

 
 

INTERPRETIVE SUMMARY 
 
Pre-partum diet energy and metabolic status of heifers.  Heifers were fed a HIGH E (1.56 

Mcal NE(L) /kg) or LOW E energy (1.35 Mcal NE(L)/kg) diet the last five wk of gestation.  

Function of neutrophils and peripheral blood mononuclear cells assessed in vitro were not 

affected by diet.  Response to intramammary challenge with a mildly pathogenic Escherichia 

coli after calving was also not influenced by pre-calving diet.  Feeding diets providing more 

energy than the cow requires for the final weeks of gestation provides no benefit to the 

immune system of heifers.   

ABSTRACT 
 

 Nutritional management during the transition period plays an important role in 

postpartum immune function.  Recently, some dairies have moved away from feeding high 

energy dry cow diets toward feeding a lower, but adequate energy diet.  In this study, heifers 

were fed a HIGH E (1.56 Mcal NE(L) /kg) or LOW E (1.35 Mcal NE(L) /kg) diet the last 

five weeks of gestation. The objective of this study was to determine if dietary energy 

differences in the prepartum dairy heifer had an effect on peripartum immune function.  In 

vitro immune function was assessed by neutrophil iodination, differential white blood cell 

counts, and whole blood interferon-γ production in response to both recall antigens and non-

specific stimulation. There was no evidence that prepartal dietary energy impacted the degree 



www.manaraa.com

44 

to which these in vitro tests of immune function were suppressed in the transition diary 

heifer. It is suspected that prepartum energy would have an effect on colostrum quality, but 

in this study, prepartum dietary energy had no effect on protein and IgG content of 

colostrum.  The competency of the immune system as a whole was assessed by response to 

intramammary challenge with a mildly pathogenic strain of Escherichia coli.  Throughout the 

course of the challenge, quantitative milk bacterial culture, milk somatic cell count, rectal 

temperature, differential WBC counts, serum minerals, and acute phase response were 

assessed and no differences were noted between dietary treatments. All animals were 

similarly able to recover from the experimentally induced E. coli mastitis. Feeding diets 

providing more energy than the dairy heifer requires for the final weeks of gestation provides 

no benefit to the immune system.  

INTRODUCTION 

 Effective management of the transition dairy cow is one of the greatest challenges in 

the dairy industry.  The transition cow faces tremendous metabolic changes as well as 

impaired immune function, resulting in an increased incidence of both metabolic and 

infectious disease.  Immunosuppression in the transition cow involves impairment of both the 

innate and adaptive branches of the immune system, with the function of both neutrophils 

and lymphocytes shown to be impaired during this time (Kehrli et al., 1989a, Kehrli et al., 

1989b).  Immunosuppression begins prior to calving, as cows developing metritis postpartum 

have been shown to have reduced immune function prepartum compared to their healthy 

counterparts (Cai et al., 1994, Hammon et al., 2006, Kim et al., 2005).  In addition to 

increased incidence of infectious disease, immunosuppression, particularly impaired 

neutrophil and lymphocyte function, have been associated with retained placenta (Gunnink, 
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1984b, Kimura et al., 2002b).  Nutritional management during the transition period likely 

plays an important role in preventing postpartum infectious disease. Prepartum changes in 

energy balance and amount of time spent feeding have been associated with an increased 

incidence of uterine health problems, suggesting a link between nutrition and immune 

function in the transition cow (Hammon et al., 2006, Urton et al., 2005).   

 Most recent studies on nutrition in the transition cow have focused on maximizing 

energy intake by utilizing high energy diets, but retrospective evidence suggests that the 

degree of depression in DMI at the time of calving, not the absolute energy intake, may play 

a larger role in improving energy balance in the early postpartum period (Grummer et al., 

2004).  In this study, we utilize a dry cow diet that meets, but does not exceed the energy 

needs of the dairy heifer, compared with one that exceeds energy requirements.  The goal of 

the lower energy diet was to minimize DMI depression at the time of calving.  The 

metabolic, production, and reproductive parameters associated with the experimental diets 

are discussed in a companion paper.   

 The purpose of this study was to determine if dietary energy differences during the 

dry period could affect immune function in the transition cow.  Immune function was 

assessed in a variety of ways.  The innate branch of the immune system was tested in vitro 

via neutrophil iodination.  Impairment of any of a number of steps leading up to neutrophil 

degranulation results in reduced iodination, allowing this to be an effective screening method 

for neutrophil dysfunction (Roth and Kaeberle, 1981). Peripheral blood mononuclear cell 

(PBMC) function was assessed in vitro by IFN-γ production in response to recall and non-

recall stimulation. In addition to in vitro tests of immune function, an in vivo challenge model 

was used to assess the ability of the immune system as a whole to eliminate a bacterial 
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pathogen.  The in vivo challenge consisted of the intramammary inoculation of Escherichia 

coli in the early postpartum period.  Immune function and time to recovery from infection 

were assessed throughout the challenge.   

MATERIALS AND METHODS 

Animals and Experimental Design 

 Twenty-four Holstein heifers were used to evaluate the effect of two different close-

up diets on metabolic and immunologic parameters during the prepartum and early post-fresh 

periods.  Heifers were fed either a low energy density straw based dry cow diet (LOW E) or a 

traditional, higher energy density dry diet (HIGH E) for the five wks prior to calving (see 

companion paper).  The LOW E diet was designed to meet the energy requirements of the 

heifers (NRC 2001).  The HIGH E diet exceeded the requirements considerably (see 

companion paper). Three cows on the HIGH E energy diet were removed from the 

experiment.  One aborted prior to the start of the study, one had dystocia and required a 

Caesarian section, and one had severe udder edema causing severe inflammation of the udder 

necessitating treatment.  All procedures were approved by the Animal Care and Use 

Committee of the USDA National Animal Disease Center, Ames, IA.   

Periparturient Immune Function 

 Blood samples for immune function were collected weekly from 5-7 weeks 

prepartum until approximately 2 weeks prepartum, when sampling was increased to twice per 

week.  Following parturition, blood samples were collected on 0 or 1, 4, 14, 21, 28, and 42 

DIM.  Blood used for determination of neutrophil function was collected by jugular 

venipuncture into 10% (vol/vol) 2x acid citrate dextrose (77µM sodium citrate, 38µM citric 

acid, 122µM dextrose).  Neutrophil function was assessed by neutrophil iodination, an assay 
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which quantifies the conversion of inorganic iodide to a trichloracetic acid precipitable, 

protein bound form following the interaction of hydrogen peroxide produced within the 

neutrophil phagocytic vacuoles with myeloperoxidase present in primary granules.  The 

iodination reaction occurs primarily within the phagocytic vacuole, but can also occur 

extracellularly upon release of myeloperoxidase and hydrogen peroxide to the extracellular 

environment.  Neutrophil iodination is assessed in isolated neutrophils following exposure to 

pre-opsonized zymosan, which consists zymosan that has been pre-treated with bovine 

serum.  In order to successfully iodinate tyrosine and other residues on proteins within the 

phagocytic vacuole or extracellularly multiple steps within the pathway need to be 

functioning properly, including phagocytosis of the opsonized zymosan particle, 

transportation of the phagocytic vacuole within the cell, degranulation of primary granule, 

normal oxidative metabolism within the neutrophil, and sufficient levels of active 

myeloperoxidase enzyme.  If any of these steps is impaired, it will be reflected by a reduced 

value for neutrophil iodination; thus this assay is an effective screening method for 

neutrophil dysfunction (Roth and Kaeberle, 1981).   

 At 6 wk prior to expected median date of calving, all heifers were immunized with 

107 colony forming units of attenuated Mycobacterium bovis bacillus Calmette-Guerin 

(BCG) strain Pasteur subcutaneously in the mid-cervical region of the neck to allow later 

assessment of in vitro recall response of peripheral blood mononuclear cells to M. bovis 

purified protein derivative (Foote et al., 2007). A whole blood assay was used to assess the in 

vitro recall response to BCG vaccination, using purified protein derivative from M. bovis 

(PPDb) (CSL Ltd. Parkville, Victoria, Australia). Pokeweed mitogen (PWM) was also used 

to assess ability of both B and T –lymphocytes to respond to non-specific stimulation.  Blood 
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samples for these assays were collected into Vacutainer tubes containing sodium heparin 

(Becton Dickinson, Franklin Lakes, NJ) at -21, -14, -7, 0, 4, 14, 21, 28, and 42 days relative 

to calving.  One ml of whole blood was transferred to each of 4 wells of a 24 well microtiter 

plate.  Each of the following was incubated in duplicate with whole blood: 66 µl of phosphate 

buffered saline (PBS) to determine baseline IFN-γ production, 66 µl PPDb (20 µg) to 

determine recall response to an antigen the animals had been previously sensitized to.  Plates 

were gently shaken after addition of PPD, and PBS, and were incubated at 37˚C with 5% 

CO2 for 24 hr.  A second plate was prepared in a similar manner with each of the following 

incubated in duplicate with whole blood: 20 µl PBS to determine baseline IFN-γ production  

or 20µl pokeweed mitogen (1µg/ml) to examine response to a non-specific stimulus. This 

plate was gently shaken and incubated at 37˚C with 5% CO2 for 6 hr.  After incubation, 

plates were centrifuged at 1170xg for 20min at 21˚C.  Plasma was removed and stored at –

20˚C until analysis for IFN-γ production.  Plasma IFN-γ was determined using the Bovine 

IFN gamma Screening Set (Pierce Biotechnology, Rockford, IL).  IFN-γ production was 

determined by subtracting the baseline IFN-γ production (PBS wells) from IFN-γ production 

in stimulated wells for each respective assay.   

 At first milking a sample of colostrum was collected and frozen at -20 C until 

analysis.  Volume of first milk was also recorded.  Colostrum protein concentration (g / 100 

ml) was estimated using a clinical refractometer (American Optical, Corporation, Buffalo, 

NY) with the colostrum thawed to room temperature, mixed well, and diluted 1:3 in 

phosphate buffered saline prior to refractometry.  Colostrum immunoglobulin G 
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concentration was estimated by radial immunodiffusion (Bovine IgG RID kit, VMRD, Inc., 

Pullman, WA), following dilution of the colostrum 1:3 in phosphate buffered saline.   

Mastitis Challenge 

 Mastitis challenge was initiated at the evening milking the fifth day after calving.  

Escherichia coli strain P4, a strain derived from a clinical case of mastitis, was used in the 

challenge model (Bramley et al., 1976).  Bacteria were prepared as previously described 

(Bannerman et al., 2004) , with the following alterations. Plate counts were determined using 

spread-plates on blood agar, rather than pour plates using trypticase soy broth.  On the day of 

inoculation, the culture was diluted to 150 cfu/ml based on the plate counts.  At the time of 

infection, 3cc of the bacterial preparation described above was infused into the right front 

quarter.  Cows were infected on different days, so the inoculation dose of E. coli was not the 

same for all cows.  The actual infection dose was determined by culturing the inoculant upon 

return from the barn.  The average infectious dose was 746 cfu with a range of 24 to 4100.  

The wide range of doses was due to laboratory error, but the infused doses were all sufficient 

to establish infection and even the highest dose is lower than that often used in mastitis 

challenges (Lohuis et al., 1990, Rambeaud et al., 2003).   

 Blood and milk samples were collected at the following time points relative to 

infection: 0h, 12h, 18h, 24h, and every 12 hrs thereafter.  Rectal temperatures were also taken 

on the same schedule.  Milk samples for culture were serially diluted and 100µl of each 

dilution was plated onto blood agar plates (Becton Dickenson, Franklin Lakes, NJ) and were 

incubated aerobically at 39˚C for 24 hours.  When milk cultures in an individual cow failed 

to detect any E. coli at 2 consecutive time points, blood samples and temperature were no 

longer collected.  All sampling stopped after 4 more time points.  Blood samples were taken 
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by jugular venipuncture into serum separator Vacutainers for serum samples, sodium heparin 

Vacutainers to assess whole blood IFN-γ response and haptoglobin analysis, and into EDTA 

Vacutainers for white blood cell (WBC) counts (Becton Dickinson). Differential WBC 

counts were determined using a Hemavet 1500 multi-species hematology system (CDC 

Technologies/Drew Scientific Inc., Oxford, CT). Milk samples were preserved using 

bronopol and natamycin (Broad Spectrum Microtabs , D & F Control Systems, Inc., Dublin, 

CA) and were stored at 4˚C until analysis by an automated cell counter (Bentley Somacount 

150, Bentley Instruments, Inc., Chaska, MN).  

 Serum iron was determined using Iron/TIBC Reagent Set (Pointe Scientific, Inc., 

Canton, MI).  This kit determines total serum iron concentration by the  ferrozine reaction 

after release of Fe from transferrin by acidic pH.  Samples were run in triplicate and all 

volumes were scaled for use in 96 well microtitre plates. Briefly, 100 µl of iron buffer 

reagent was added to each well, followed by 20 µl of sample.  A baseline absorbance was 

taken at 560 nm to zero the spectrophotometer prior to addition of 20 µl of a 1:8 dilution of 

acidic color reagent. The plate was incubated at 37˚C for 15 minutes prior to the final 

absorbance reading at 560nm.  Values were determined based on a standard curve run on 

each plate.  Plasma haptoglobin was determined using the Bovine Haptoglobin ELISA Kit 

(Immunology Consultants Laboratory, Inc., Newberg, OR).  Serum calcium and magnesium 

were determined by atomic absorption spectrophotometry (Perkin-Elmer, 1965)and 

phosphorus by colorimetric spectrophotometry (Parekh and Jung, 1970).  

Statistics 

 Data were analyzed using a repeated measures ANOVA  (PROC MIXED, SAS, NC.) 

(Littell et al., 1998).  The model included the fixed effects of treatment (HIGH E vs. LOW E 
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Diet), day relative to parturition, and treatment x day interaction, the random effect of cow 

nested within treatment, and the residual error. For each variable analyzed, cow nested within 

treatment was subjected to three covariance structures: compound symmetry, autoregressive 

order 1, and unstructured covariance. The covariance that resulted in the Akaike’s 

information criterion closest to zero was used. Means and SEM are reported for all data. 

When significant effects (P < 0.05) due to treatment, day, or treatment x day interactions 

were detected, means separation was conducted by the Tukey-Kramer option in SAS. Data 

obtained during the E. coli mammary gland challenge were analyzed in a separate but similar 

model, with time relative to E. coli infusion utilized in place of day relative to parturition. 

RESULTS AND DISCUSSION 

Peripartum Immune Function 

 Dietary treatment had no significant effects on neutrophil function as assessed by 

neutrophil iodination (Fig. 1).  There was a significant time effect (p<0.05), with iodination 

values at calving falling 45% and 32% for HIGH E and LOW E respectively from a baseline  

average determined from assays performed during the period from 3 to 6 weeks prepartum.  

This is a similar decline to that reported in a study by Kimura et al., in which there was 

approximately a 30% decline in neutrophil iodination over the same time period (Kimura et 

al., 1999a).   

WBC numbers/µl of blood were similar between treatments, with WBC count 

markedly elevated on the day of calving.  Both neutrophil and lymphocyte numbers/ µl were 

similar between treatments (Fig. 2).  Neutrophil numbers/µl showed a dramatic increase on 

the day of calving, rapidly returning to baseline levels after calving.  The pattern of increase 

in blood WBC and neutrophil numbers / µl is similar to that reported by Kimura, but in that 
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study, WBC number dropped below baseline immediately postpartum, which was not seen in 

this study (Kimura et al., 2002a).  In addition, the absolute numbers of both WBC and 

neutrophils were higher in this study than was reported by Kimura (Kimura et al., 2002a).  

Blood samples from cows in both treatments showed a gradual reduction in lymphocyte 

counts as parturition approached.  There were no significant differences in blood platelet 

numbers / µl between treatments.  Blood platelet numbers postpartum were higher than 

prepartum.   

IFN-γ production in response to PPDb was similar between treatments, with 

significantly reduced IFN-γ production in response to recall antigens as parturition 

approached in both groups. PPDb stimulated PBMC production of IFN-γ showed similar 

declines at the time of calving with a reduction of 71% and 62% for HIGH E and LOW E 

respectively from the average of values observed during the  period from 2 to 3 weeks 

prepartum (Fig. 3).  IFN-γ production by mononuclear cells in response to non-specific PWM 

stimulation was relatively constant across the peripartum period (Fig. 3).  Lymphocyte 

function has been demonstrated to be impaired during the first week after calving, and based 

on other studies we had expected IFN-γ production in response to PWM would decline 

during the transition period (Kehrli et al., 1989a, Nonnecke et al., 2003).  This was not noted 

in this study and may suggest differences in results obtained from whole blood preparations 

versus isolated lymphocyte culture.  It may also reflect inappropriate dosing or time of 

exposure to PWM in that cells were producing IFN-γ at high levels even with just 6 h 

incubation with the PWM.  There was no evidence that pre-partal dietary energy impacted 
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the degree to which any of these in vitro estimates of PBMC function were suppressed in the 

transition dairy cow 

 Nutrition during late gestation is often suspected to determine colostrum quality.  

Surprisingly, there is little work in dairy cattle upon which to base an opinion.  In ewes 

whose diet intake was restricted to 60% of their requirement or those allowed to consume 

140% above their requirements, the total amount of IgG secreted in colostrum was reduced 

compared to that of ewes fed at their requirements (Swanson et al., 2008).  In this study both 

total energy and protein consumed were affected. In another study of ewes it was found that 

excessive protein fed in late gestation reduced total IgG secreted in colostrum (Wallace et al., 

2006). Other studies have found no effect of dietary protein on colostrum quality (Blecha et 

al., 1981, Olson et al., 1981).  Feeding less energy than required to sows in late gestation 

reduces protein and IgG concentration of colostrum (Goransson, 1990).  In our study the 

dietary energy content fed to dairy cows in late gestation had no significant effects on protein 

or IgG concentration of colostrum or the total amounts of protein or IgG secreted in the 

colostrum produced at first milking (Table 1).  In beef cows supplementing the late gestation 

diet with energy above that of controls also has been observed to have no effect on colostrum 

IgG content (Dietz et al., 2003, Halliday et al., 1978, Hough et al., 1990).  Feeding heifers 

more energy than they require in late gestation does not confer any advantages in terms of 

colostrum quality or quantity.   

Mastitis Challenge  

 While in vitro tests of immune function have advantages in terms of cost and being 

non-invasive, ultimately it does not resolve the question of whether the actual resistance to 

infection was affected by the diet.  In this study cows were challenged in one quarter of the 
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mammary gland with a low number of an E. coli strain that cows can clear without any 

pharmacologic intervention (Bannerman et al., 2008).  There was some variability in the 

number of bacteria infused in quarters to induce mastitis, but the bacteria colony forming 

units (CFU) in milk of the infected quarters were not different between treatments, with peak 

counts at 12h for both treatments (HIGH E= 2.01 X 105 and LOW E = 3.26 x 10 5 CFU / ml 

milk) (Fig. 4).  Bacteria CFU in the milk declined from that point on.  The time it took to 

clear the mammary gland of the E. coli, defined as the first time point when two consecutive 

time points exhibited zero CFU / 100 µl milk, was similar in both groups of cows (HIGH E = 

105 + 14 h; LOW E = 130 + 20 h) (P=0.36) (Table 2).  The log SCC of the quarter to be 

infected was 4.71 ± 0.13 and 4.73 ± 0.14 in the HIGH E and LOW E cows prior to E.coli 

challenge.  SCC increased dramatically in infected quarters of all cows, with log SCC 

peaking at 24h in the infected quarter of HIGH E cows at 7.88 ± 0.14 SCC/ml and 7.41 ± 

0.24 SCC/ ml in LOW E cows (P=0.14) (Fig. 4).  The SCC did not return to baseline levels 

during the 240 hrs that milk SCC was monitored following infection in either group.  SCC in 

the contralateral control quarter was consistently at baseline levels between treatments and 

across time points after infection.  Rectal temperatures were similar between treatments; 

peaking at 12h post-infection, and returning to normal, defined as the first time point when 

rectal temp fell below 39˚C following infection, by 38 ± 4.5 h in HIGH E cows and 48 ± 7.8 

h in LOW E cows (P=0.32) (Fig. 5) (Table 2).  

WBC counts were similar between treatments, with counts initially decreasing to a 

nadir at 18h, followed by a rebound above baseline by 36h (Fig. 6).  Neutrophil counts were 

not different between treatments and followed a pattern similar to WBC counts, decreasing 

through 18h, then increasing above starting counts by 36h with a gradual return to normal by 
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120h (Fig. 6).  The initial decline in neutrophil counts is likely associated with a massive 

recruitment of neutrophils to the mammary gland, followed by a rise above baseline as the 

body produced additional neutrophils in response to the infection.  Lymphocyte counts 

dropped after infection, reaching their lowest value at 18h for both treatments (Fig. 6). 

Platelet counts were not different between treatments and did not vary across time points 

after infection.   

The acute phase response is mediated by the liver, resulting in increased or decreased  

production and release of a variety of proteins that are important in the innate immune 

response. Following an inflammatory stimulus, pro-inflammatory cytokines, particularly 

TNF-α, IL-1, and IL-6, promote or inhibit production of acute phase proteins by the liver  

(Jiang et al., 2008). These proteins play various roles in the innate immune system.  Serum 

haptoglobin, represents a positive acute phase protein whose concentration in serum typically 

increases during inflammation. Haptoglobin binds and sequesters heme iron in the 

circulation.  Increasing circulating haptoglobin concentrations during a bacterial infection 

may prevent heme iron from becoming available to bacteria.  Hepcidin, another important 

protein in iron homeostasis, has a wider range of actions on iron metabolism during infection.  

Hepcidin production is upregulated by IL-6 and results in reduced iron absorption from the 

intestine, as well as internalization of ferroportin, a major iron transport protein, into 

macrophages, which results in a drop in serum iron concentration (Hugman, 2006). 

(Wrighting and Andrews, 2006).  Iron is transported within the serum bound primarily to 

transferrin.  One mole of transferrin has the ability to bind 2 moles of iron, though typically 

only 15-30% of iron binding capacity of transferrin is actually utilized.   Transferrin is 

considered a negative acute phase protein- its serum concentration typically decreases during 
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inflammation.   One might suspect that increasing transferrin during times of inflammation 

would be beneficial as the ability to sequester more free iron might be increased.  However, 

the reduction in transferrin in blood may have the greater role of reducing the total amount of 

serum iron that might be available for bacterial growth (Bertoni et al., 2008). Serum iron 

concentration was similar between treatments, with a significant drop in serum iron after 

infection, reaching a nadir at 36h post-infection (Fig. 7).  There were no statistically 

significant differences in total iron binding capacity of the serum as a result of prepartum 

diet. Unsaturated iron binding capacity (UIBC) was different between treatments, with 

HIGHE cows having a higher UIBC.  This difference began prior to E. coli inoculation, so it 

may be related to and effect of calving, rather than the infection itself. Haptoglobin began to 

rise 18h post-infection, and peaked at 60 and 72 hours post infection in HIGH E and LOW E 

diets respectively (Fig. 7).  There were no significant diet effects in the response of 

haptoglobin concentrations to infection.  These results are consistent with previous reports of 

serum haptoglobin following experimental E. coli mastitis (Suojala et al., 2008).  The serum 

level of haptoglobin at the time of the infection was similar in both groups of cows.  This 

also suggests that the acute phase response of the cows to the act of parturition and onset of 

lactation was not affected by diet.  High and sustained levels of haptoglobin following 

parturition have been found to be indicative of animals that are at risk of increased health 

problems (Bertoni et al., 2008). 

Serum calcium concentration was similar across dietary treatments, with Ca 

decreasing after infection in both groups, reaching its lowest point at 18h post-infection (Fig. 

8).  Serum magnesium was similar between treatments and showed a slight decrease from 

12-36 h post-infection (Fig. 8).  Serum phosphorus decreased shortly after infection, reaching 



www.manaraa.com

57 

a nadir at 12 h post-infection.  Overall, there was a trend for the serum phosphorus 

concentration to decrease to a greater extent in the LOW E group. (Fig. 8). Ca levels in serum 

have been shown to decline during infusion of lipopolysaccharide in cattle (Waldron et al., 

2003).  Interleukin 1 and perhaps other cytokines elicited by endotoxemia likely play a role 

as plasma calcium and phosphorus concentrations decrease rapidly in cows following 

administration of interleukin 1 (Goff et al., 1992).  

CONCLUSIONS 

Feeding primiparous cows the HIGH E E (1.56 Mcal/kg), providing excess energy or 

the LOW E providing adequate energy (1.35 Mcal/kg), diets during the last 5 wk of gestation 

had no effects on in vitro tests of neutophil or peripheral blood mononuclear cell function as 

calving approached or in the first days of lactation. Neutrophils and PBMC from animals on 

both diets followed typical patterns of immunosuppression associated with the time of 

calving. Cows were subjected to an intramammary E.coli challenge on day 5 of lactation and 

all animals were similarly able to successfully recover from the experimentally induced E. 

coli mastitis.  Under the management conditions of this study, dietary treatment did not affect 

the disease fighting ability of the immune system during the transition period.  The 

movement of the dairy industry away from excessive energy diets during the prepartum 

period toward the use of lower, but adequate, energy, high straw diets does not appear to 

have any detrimental effects on immune competence of the primiparous dairy cow.  
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Table 1 - Colostrum (1st milk) quality as affected by prepartal diet energy concentration 
(Mean + SEM).   

 Diet 
 HIGH E LOW E 

Protein concentration (g/100 ml) 14.85 + 0.33 15.41 + 0.56 

IgG concentration (mg/100 ml) 7250 + 420 7050 + 412 

Volume first milk (L) 6.31 + 0.911 7.71 + 0.64 

Total Protein in 1st milk (g) 941 + 141 1175 + 89 

Total IgG in 1st milk (g) 442 + 59 543 + 54 

 

 

 

Table 2 – Time following infection of the mammary gland for rectal temperature to return 
to 102.8 C or less and time following infection when milk samples became free 
of bacteria, defined as the first time point when two consecutive time points 
exhibited zero CFU / 100 µl milk  

 Diet  
 HIGH E LOW E P value 

Time to baseline temp. (hrs ± SEM) 38 + 4.5 48 + 7.8 0.32 

Time to bacterial clearance (hrs ± SEM) 105 + 14 130 + 20 0.36 
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Figure 1 – Mean and SEM neutrophil myeloperoxidase activity in LOW E (●) and HIGH E 
(○) groups during the periparturient period as determined from incorporation of radioactive 
inorganic iodide in trichloroacetic acid precipitable protein by neutrophils.  Results are 
expressed as percentage of myeloperoxidase activity in three non-pregnant, non-lactating 
cows and one steer that served as internal laboratory controls.  
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Figure 2 – Mean and SEM (A) white blood cell, (B) neutrophil, and (C) lymphocyte number / 
µl blood, in LOW E (●) and HIGH E (○) groups during the periparturient period as measured 
by an automated hematology system.  
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Figure 3 – Mean and SEM whole blood IFN-γ production as measured by ELISA in response 
to stimulation by (A) Mycobacterium bovis PPD or (B) pokeweed mitogen during the 
periparturient period in LOW E (●) and HIGH E (○) groups.  
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Figure 4 – Mean and SEM (A) log of milk bacterial numbers as determined by quantitative 
plate count and (B) log of somatic cell count of the front right quarter as determined by an 
automated cell counter for LOW E (●) and HIGH E (○) groups during the intramammary E. 
coli challenge.  Mean and SEM log of somatic cell counts for the front left quarter is 
displayed as LOW E (■) and HIGH E (□) groups.  

B

3

4

5

6

7

8

9

0 12 24 36 48 60 72 84 96 108 120

Hours after innoculation

Lo
g 

S
C

C
A

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 12 24 36 48 60 72 84 96 108 120
 

B
ac

t. 
C

ou
nt

 (
lo

g 
cf

u/
m

l)



www.manaraa.com

64 

 

Figure 5 – Mean and SEM rectal temperatures in LOW E (●) and HIGH E (○) groups during 
the hours following intramammary E. coli challenge.  
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Figure 6 – Mean and SEM (A) white blood cell counts, (B) neutrophil count, and (C) 
lymphocyte count in LOW E (●) and HIGH E (○) groups during the hours following 
intramammary E. coli challenge as measured by an automated hematology system.  
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Figure 7 – Mean and SEM 
(A) plasma haptoglobin 
concentration as measured 
by ELISA, (B) serum total 
Fe concentration, (C) 
unsaturated iron binding 
capacity, and (D) total iron 
binding capacity  as 
measured by colorimetric 
ferrozine assay, in LOW E 
(●) and HIGH E (○) groups 
during the hours following 
intramammary E. coli 
challenge.  
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Figure 8 – Mean and SEM (A) serum calcium, (B) serum magnesium, and (C) serum 
phosphorus concentrations in LOW E (●) and HIGH E (○) during the hours following 
intramammary E. coli challenge as measured by atomic absorption.  
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GENERAL DISCUSSION 
 
Effects of Diet on DMI and Metabolic Parameters Pre-Partum 

Increasing the energy density of the pre-partum diets will generally increase DMI 

across the last three wks of gestation (Emery et al., 1969, Holcomb et al., 2001, Minor et al., 

1998, Rabelo et al., 2003, Vandehaar et al., 1999). Our results were consistent with these 

studies. The HIGH E cows consumed 19.0 Mcal NE(L)/ day while cows fed the LOW E diet 

consumed 14.9 Mcal NE(L) / d.  The energy requirement for these cows is approximately 12 

Mcal NE(L) / d (2001), so cows on the LOW E diet still received energy beyond their 

requirement.   

DMI decreased in both groups of cows during the last week of gestation.  However, 

the cows fed the HIGH E diet had a significant reduction of 2.2 kg DMI/ d or 18% in the last 

3 days of gestation, while LOW E cows maintained their intake through this period.  The 

depressed DMI during the final days of gestation observed in the cows fed the HIGH E diet 

parallels the pattern of DMI seen in many previous studies (Bertics et al., 1992, Grummer et 

al., 2004, Hayirli et al., 2002, Marquardt et al., 1977).  Grummer et al., (Grummer et al., 

2004) suggested that the degree of depression in DMI at the time of calving may have a more 

significant effect on postpartum performance than the level of DMI itself.  The same authors 

went on to suggest that higher pre-partum DMI may actually promote a greater magnitude of 

DMI depression when compared to cows with lower pre-partum DMI.  They also suggest the 

delta change in DMI during the final days of gestation may act as a stimulus for the 

mobilization of fat from adipose tissue.  Our data support this argument.  The HIGH E group 

had both higher pre-partum DMI and a greater degree of DMI depression at the time of 

calving, even though they were consuming more energy the final day of gestation than the 
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LOW E cows on that day (15.4 Mcal vs 13.9 Mcal NE(L)).  And, at least on the day of 

calving, the cows fed the HIGH E diet had higher NEFA concentrations in their blood than 

the LOW E cows.  It appears that the trigger for body fat mobilization has less to do with 

absolute energy intake than it does with intake relative to the previous day or days intake of 

energy.  

Elevated blood NEFA concentrations during this period may be predictive of cows 

with increased risk of developing displaced abomasum (Cameron et al., 1998, LeBlanc et al., 

2005) and retained placenta (Conner et al., 2001), and increased risk of being culled in early 

lactation (Duffield, 2007). In the Minor et al., (Minor et al., 1998), Rabelo et al., (Rabelo et 

al., 2003) and VandeHaar et al., (Vandehaar et al., 1999) studies, increasing the energy 

content of the pre-partum diet reduced blood NEFA concentrations prior to calving.  Plasma 

NEFA concentrations of the HIGH E cows between -22 d and -4 d (0.15 + 0.02 M) were 

lower (P < 0.05) than in LOW E cows during this period (0.21 + 0.02 M) (P < 0.02), but in 

both groups of cows the NEFA concentrations were well below the suggested close-up cow 

critical NEFA level of 0.4 -0.5 M that would predict cows “at-risk” for metabolic disorders  

(Duffield, 2007, Van Saun, 2006).  NEFA concentrations rose rapidly the day of calving in 

both groups.  This represented a 3-fold NEFA concentration increase in HIGH E cows and a 

1.7-fold increase in LOW E cows from the average value observed across the period from 3 

wks to 3 days prior to calving. 

 The glucose tolerance test results show a similar zenith in blood glucose 

concentration was achieved in both groups of cows at the cessation of glucose infusion.  

Reduced tissue sensitivity to insulin has been demonstrated in cows with high BCS and is 

suspected to play a role in susceptibility of the transition cow to metabolic disease (Holtenius 
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and Holtenius, 2007, Rukkwamsuk et al., 1998). Overfeeding dairy cows during the pre-

partum period may accentuate insulin resistance in adipose tissue, leading to increased NEFA 

mobilization, lower DMI, and greater risk for lipid-related metabolic disorders (Holtenius et 

al., 2003). Our data do not support the theory that dietary energy fed to the cow can affect 

insulin sensitivity of the tissues, perhaps because BCS was similar in the two groups of cows 

at calving or perhaps we did not have enough animals in the study. 

 Plasma BUN concentration was significantly higher in LOW E cows prior to calving 

than in HIGH E cows (P<0.05).  Since dietary protein concentrations were comparable and 

DMI was higher in the HIGH E cows, the LOW E cows might be expected to have lower 

BUN concentration as the total nitrogen entering the rumen should have been lower. 

However, a likely explanation is that the rumen degradable protein nitrogen entering the 

rumen of the LOW E cows is not incorporated into microbial protein very well because of the 

lack of starch or other readily fermentable carbon sources in the rumen.  This nitrogen enters 

the blood as ammonia and is converted to urea in the liver, raising BUN.  The NRC (2001) 

model predicted that these diets would supply similar amounts of metabolizable protein to 

the cows, assuming similar DMI.  However, since BUN levels are higher in the LOW E cows 

these data suggest the NRC model overestimates the contribution of the LOW E diets to 

metabolizable protein.  It may be necessary to provide more dietary rumen undegradable 

protein to meet the metabolizable protein requirements of the dry cow fed a LOW E diet.  

There were no apparent ill-effects from this reduced availability of metabolizable protein on 

the LOW E diet.   
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Effects of Diet on DMI and Metabolic Parameters Post-Calving  

 DMI increased after calving in cows in both diet treatments at a similar rate.  The 

intramammary E.coli challenge affected both groups of cows to a similar degree and the rate 

of recovery of DMI after challenge was similar.  Plasma NEFA concentration increased 

slightly above calving levels in both groups the first two days of lactation but were on the 

decline at the time of the E.coli intramammary challenge.  The combination of transition to a 

new diet, liver biopsy, and initiation of milk production likely contributed to the rise in 

NEFA in both groups after calving, though the average remained well below levels that 

would be considered indicative of severe negative energy balance in both groups of cows.  

The triglyceride content of the liver, determined in the biopsies obtained the day after 

calving, was similar in both groups of cows. In some studies, increasing the energy content of 

the pre-partum diet also increased glycogen and/or reduced the triglyceride levels in the liver 

around the time of calving, factors which should have reduced the risk of development of the 

fatty liver ketosis complex (Doepel et al., 2002, Minor et al., 1998, Vandehaar et al., 1999).  

In our study, liver triglycerides at calving were relatively low in all cows and there was no 

effect of diet, consistent with the findings of Rabelo et al., (Rabelo et al., 2005).  Plasma 

BHBA concentrations at 4 DIM were similar across dietary treatments.  Examining BHBA at 

time points between 7 and 14 DIM is generally felt to be more informative of the degree of 

negative energy balance experienced by the cow; however the intra-mammary challenge with 

E.coli was felt to be a factor that would render interpretation of BHBA at these later DIM 

meaningless.  Plasma BUN concentrations were similar in cows fed the HIGH E and LOW E 

diets during the lactation phase of the study, when they were fed the same diets.  
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Milk production was similar in both groups of cows (Figure 6).  There was no effect 

of diet on days to first ovulation, which was 24 and 30 DIM for the HIGH E and LOW E 

cows respectively (P= 0.27).  

Plasma concentrations of α-tocopherol, retinol, and β-carotene were not statistically 

different across the dietary treatments.  All three compounds exhibited a significant decline 

around the time of calving followed by a recovery over the first two weeks of lactation, as 

reported in other studies (Goff and Stabel, 1990, Weiss et al., 1990).  Similarly, plasma Ca 

and Mg concentrations did not differ across dietary treatments though there was a significant 

sub-clinical decline in plasma Ca concentration in the first few days of lactation in both 

groups.  Plasma P concentration also declined in both groups of cows on the first few days of 

lactation, and the decline was greater in cows fed the LOW E diet (P < 0.05).  The mineral 

levels were not low enough to cause noticeable clinical symptoms.   

Several research groups report maximizing DMI or energy intake during the close-up 

period improves post-partum intake and performance (Dann et al., 1999, Doepel et al., 2002, 

Mashek and Beede, 2000, Minor et al., 1998, Rabelo et al., 2003, Vandehaar et al., 1999). In 

contrast, several studies provide evidence that restricting energy intake during either the 

entire dry period (Agenas et al., 2003, Douglas et al., 2006, Holtenius et al., 2003, Tesfa et 

al., 1999) or the close-up period (Holcomb et al., 2001) to levels at or even below NRC 

requirements (2001) has no negative impact on postpartum DMI.  Our results also suggest 

that higher DMI pre-partum, which was associated with the higher energy diet, does not lead 

to greater DMI in early lactation. 
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Effect of Diet on Peripartum Immune Function 

 Dietary treatment had no significant effects on neutrophil function as assessed by 

neutrophil iodination.  There was a significant time effect (p<0.05), with iodination values 

falling 45% and 32% for HIGH E and LOW E respectively between the prepartum period (an 

average over the period from 3 to 6 weeks prepartum) and the day of calving.  This is a 

similar decline to that reported in a study by Kimura et al., in which there was approximately 

a 30% decline in neutrophil iodination over the same time period (1999a).   

WBC counts were similar between treatments, with counts markedly elevated on the 

day of calving.  Both neutrophil and lymphocyte counts were similar between treatments.  

Neutrophil counts showed a dramatic increase on the day of calving, rapidly returning to 

baseline levels after calving.  The pattern of increase in WBC and neutrophil counts is similar 

to that reported by Kimura, but in that study, WBC counts dropped below baseline 

immediately postpartum, which was not seen in this study (2002a).  In addition, the absolute 

numbers of both WBC and neutrophils were higher in this study than was reported by 

Kimura (2002a).  Both treatments showed a gradual reduction in lymphocyte counts as 

parturition approached.  There were no significant differences in platelet count between 

treatments, with higher platelet counts postpartum compared to prepartum values.   

IFN-γ production in response to PPDb was similar between treatments, with 

significantly reduced IFN-γ production in response to recall antigens as parturition 

approached in both groups. PPDb stimulated PBMC production of IFN-γ showed similar 

declines at the time of calving with a reduction of 71% and 62% for HIGH E and LOW E 

respectively between 2 to 3 weeks prepartum and the day of calving.  IFN-γ production by 

mononuclear cells in response to non-specific PWM stimulation showed no change across 
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the peripartum period.  Lymphocyte function has been demonstrated to be impaired during 

the first week after calving, thus it would be expected that IFN-γ production in response to 

PWM would decline during the transition period (Kehrli et al., 1989a).  This was not noted in 

this study and may suggest an improvement in immune function in periparturient heifers over 

the older cows studied by Kehrli (Kehrli et al., 1989a).  There was no evidence that pre-partal 

dietary energy impacted the degree to which these in vitro tests of immune function were 

suppressed in the transition dairy cow 

 Nutrition during late gestation is often suspected to determine colostrum quality.  

Surprisingly, there is little work in dairy cattle upon which to base an opinion.  In ewes 

whose diet intake was restricted to 60% of their requirement or those allowed to consume 

140% above their requirements, the total amount of IgG secreted in colostrum was reduced 

compared to that of ewes fed at their requirements (Swanson et al., 2008).  In this study both 

total energy and protein consumed were affected. In another study of ewes it was found that 

excessive protein fed in late gestation reduced total IgG secreted in colostrum (Wallace et al., 

2006). Other studies have found no effect of dietary protein on colostrum quality (Blecha et 

al., 1981, Olson et al., 1981).  Feeding less energy than required to sows in late gestation 

reduces protein and IgG concentration of colostrum (Goransson, 1990).  In our study the 

dietary energy content fed to dairy cows in late gestation had no significant effects on protein 

or IgG concentration of colostrum or the total amounts of protein or IgG secreted in the 

colostrum produced at first milking.  In beef cows supplementing the late gestation diet with 

energy above that of controls also has been observed to have no effect on colostrum IgG 

content (Dietz et al., 2003, Halliday et al., 1978, Hough et al., 1990).  Feeding heifers more 
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energy than they require in late gestation does not confer any advantages in terms of 

colostrum quality or quantity.   

Effect of Diet on Mastitis Challenge  

 While in vitro tests of immune function have advantages in terms of cost and being 

non-invasive, ultimately it does not resolve the question of whether the actual resistance to 

infection was affected by the diet.  In this study cows were challenged in one quarter of the 

mammary gland with a low number of an E. coli strain that cows can clear without any 

pharmacologic intervention (Bannerman et al., 2008).  The time it took to clear the mammary 

gland of the E. coli, defined as the first time point when two consecutive time points 

exhibited zero CFU / 100 µl milk, was similar in both groups of cows.  SCC increased 

dramatically in infected quarters of all cows, with log SCC peaking at 24h in the infected 

quarter.  The SCC did not return to baseline levels during the 240 hrs that milk SCC was 

monitored following infection in either group.  SCC in the contralateral control quarter was 

consistently at baseline levels between treatments and across time points after infection.  

Rectal temperatures were similar between treatments. 

WBC counts were similar between treatments, with counts initially decreasing to a 

nadir at 18h, followed by a rebound above baseline by 36h.  Neutrophil counts were not 

different between treatments and followed a pattern similar to WBC counts, decreasing 

through 18h, then increasing above starting counts by 36h with a gradual return to normal by 

120h.  The initial decline in neutrophil counts is likely associated with a massive recruitment 

of neutrophils to the mammary gland, followed by a rise above baseline as the body produced 

additional neutrophils in response to the infection.  Lymphocyte counts dropped after 

infection, reaching their lowest value at 18h for both treatments. Platelet counts were not 



www.manaraa.com

76 

different between treatments and did not vary across time points after infection.  The acute 

phase response is mediated by the liver, resulting in production of a variety of proteins that 

are important in the innate immune response.  Serum haptoglobin, an acute phase protein, is 

assessed as a direct measurement of the acute phase response.  Serum Fe was measured as an 

indirect indicator of acute phase response.  Following an inflammatory stimulus, pro-

inflammatory cytokines, particularly IL-6, promote production of acute phase proteins by the 

liver.  These proteins play various roles in the innate immune system.  The function of both 

haptoglobin and hepcidin are to limit iron availability to microorganisms.  Haptoglobin does 

so by directly binding and sequestering free iron in circulation.  Hepcidin, an important 

protein in iron homeostasis, has a wider range of actions on iron metabolism during infection.  

Hepcidin production is upregulated by IL-6, which results in reduced iron absorption from 

the intestine, as well as internalization of ferroportin, a major iron transport protein, into 

macrophages, which results in a drop in serum iron concentration (Hugman, 2006).  Hepcidin 

production has been linked to the anemia of inflammation associated with chronic 

inflammatory diseases (Wrighting and Andrews, 2006).   

Serum iron concentration was similar between treatments, with a significant drop in 

serum iron after infection, reaching a nadir at 36h post-infection.  Haptoglobin began to rise 

18h post-infection, and peaked at 60 and 72 hours post infection in HIGH E and LOW E 

diets respectively.  There were no significant differences in haptoglobin levels between 

treatments.  These results are consistent with previous reports of serum haptoglobin 

following experimental E. coli mastitis (Suojala et al., 2008).   

Serum calcium concentration was similar across dietary treatments, with Ca 

decreasing after infection in both groups, reaching its lowest point at 18h post-infection.  
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Serum magnesium was similar between treatments and showed a slight decrease from 12-36 

h post-infection.  Serum phosphorus decreased shortly after infection, reaching a nadir at 12 

h post-infection.  Overall, there was a trend for the serum phosphorus concentration to 

decrease to a greater extent in the LOW E group. Ca levels in serum have been shown to 

decline during infusion of lipopolysaccharide in cattle (Waldron et al., 2003).  Interleukin 1 

and perhaps other cytokines elicited by endotoxemia likely play a role as plasma calcium and 

phosphorus concentrations decrease rapidly in cows following administration of interleukin 1 

(Goff et al., 1992).  

Management Factors 

The two diets had similarly successful outcomes postpartum. The management 

conditions utilized in this trial may have contributed.  In this study, heifers were housed in an 

un-crowded barn (about 1.2 free stalls per heifer), and were given sole access to their 

respective diets via Calan gates which provided 0.82 M bunk space / cow.  On commercial 

dairies the cows rarely have this much space. Increased stocking density is associated with an 

increased number of displacements from the feed bunk (Huzzey et al., 2006), reduced feed 

intake (Grant, 2007), and reduced ability to rest comfortably (Krawczel et al., 2008). Age, 

height, and weight have been positively correlated with increasing social standing, thus, 

heifers are more likely to be of lower social standing in mixed parity groups (Arave and 

Albright, 1976).  Lower social standing has been associated with more frequent displacement 

from post-and-rail feed bunks (Huzzey et al., 2006). In this study the heifers were housed 

away from cows on the dairy, avoiding another common stressor on commercial dairies.  

Movement of dairy cattle into different pens or groups of cows during the transition period is 

a common practice. Altered social group has been associated with an increased number of 
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displacements from the feed bunk and decreased feeding time (von Keyserlingk et al., 2008). 

Throughout the duration of this study, there were no changes in social groups. The 

management conditions of this study eliminated many of the social and behavioral challenges 

the heifer can face under typical management conditions.   

Both low and high energy density diets were successful under the conditions of this 

study.  The decision to implement a low or high energy pre-partum diet must take into 

account the specific management practices of the dairy and how these will affect feed 

availability for heifers.  It is something of a misnomer to refer to the straw based diet utilized 

in this study as a low energy diet. It did provide adequate energy to the cows.  Providing 

adequate, but not excessive energy, in late gestation has been instituted successfully on 

dairies and has been reported to improve health of the cows when compared to the higher 

energy pre-partum diets (Beever, 2006, Drackley and Janovick Guretzky, 2007).  Further 

studies should focus on the interaction between diet energy and health in older cows and 

under typical commercial conditions, where over-crowding and cow movement in and out of 

pens are common stressors that might further impact feed intake around the time of calving.  

The use of a low potassium straw to achieve a LOW E pre-partum diet does offer an 

opportunity to reduce dietary cation-anion difference to a greater extent than is possible with 

most other forages.  However, it does require reduction of the straw to a small average 

particle size, approximately 6 cm, to effectively prevent the cows from sorting the ration.   
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GENERAL CONCLUSIONS 

Over the last 30 years the trend on dairies had been to increase the energy content of 

the pre-partum ration to enhance DMI during the final weeks of gestation.  In the last few 

years a number of dairies have shifted to a completely different dietary strategy, which 

utilizes straw as a major component of the diet to limit total energy content consumed by the 

cow.  In this study, the LOW E and the HIGH E diets had similar outcomes in terms of milk 

production and time to first ovulation and were successful in limiting health problems 

through the transition period.  The LOW diet did reduce the magnitude of DMI depression 

just before calving, but apart from a small reduction in NEFA the day of calving, few major 

benefits of this reduction were seen.  The immunologic profile of both the LOW E and HIGH 

E diets was similar and followed the typical patterns of immunosuppression associated with 

the time of calving.  All cows were similarly able to recover uneventfully from an 

intramammary E. coli challenge at day 5 of lactation.  With optimal management, the 

utilization of a diet that meets, but does not exceed the energy requirements of the pre-

calving heifer, is not detrimental to the dairy heifer despite her relatively greater energy 

needs compared to the multiparous cow.   
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APPENDIX 1. NEUTROPHIL IODINATION ASSAY 
 
The standard reaction mixture for the determination of stimulated iodination contains 2.5 

x 106 PMNs, ~100 nCi 125I, 40 nmoles NaI and 0.5 mg of OZ in 0.5 ml of EBSS.  This assay 
is performed essentially as described by Roth JA, Kaeberle ML.  1981.  Evaluation of bovine 
polymorphonuclear leukocyte function.  Vet Immunol Immunopathol  2:157-174.  The only 
exception is that we run it at the body temp of the cow 39 C.  Twenty minutes after the 
PMNs are added the reaction was stopped by addition of 3.0 ml of cold 10% (w/v) 
trichloroacetic acid (TCA).  The resulting precipitate is washed two additional times in TCA 
and the amount of radioactivity in the precipitate is determined in a gamma counter.  The 
results are expressed as nmole of NaI incorporated/ 107 PMNs/hr as follows: 
 

 (Animal cpm - Bkg cpm)  60 min 107 PMNs  
nmole NaI 

= 

____________________
 * (40 nMoles) 

_______
 * ______________

 = nMoles/107 PMN/hr 

 (Std cpm - Bkg cpm)  20 min    2.5 x 106 PMNs  
 
The primary source of Na125I is opened and diluted in a charcoal-filtered hood placed inside 
a chemical hood.  A 1.0 mCi aliquot is diluted in 2 ml of a 0.05 N NaOH solution and stored 
in a 1-inch lead container in another hood.  From this stock solution (0.5 mCi/ml), a working 
solution of Na125I will be made as needed.  The working solution is 30 ml of a 1.5 to 2.0 
Ci/ml solution.  A 50 l aliquot (50 - 100 nCi) of this material is used in a typical reaction, 
with a maximal daily usage of less than 5 Ci.  Neutrophil myeloperoxidase assays are done 
in capped tubes in a closed tumbler in a walk-in incubator held at 39°C.  The tubes are then 
transferred into a hood where the caps are immediately removed and discarded into 
radioactive waste.  The MPO assays are stopped with 2-3 ml of cold (4° C) 10% (w/v) 
trichloroacetic acid (TCA).  The tubes are centrifuged at 1171 X's g for 5 minutes at 4° C to 
collect the precipitate and are washed twice more with 3 ml of cold TCA.  The supernatants 
and washings are collected and held for half-life decay and liquid disposal inside a hood.  
The cpm of radioactivity remaining in the precipitate is determined in a gamma counter.  The 
Total (Standard) CPM tubes typically have between 30,000 - 60,000 cpm in a gamma 
counter. 
 
The most hazardous part of the assay is the preparation of the dilute Na125I solution from the 
commercially supplied radioiodine (Amersham is good for us but any will work). 
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Neutrophil Iodination Assay 

 
 
 

Tubes 

 
Cold NaI in 

EBSS 

Opsonized 
Zymosan  

(10 mg/100 ml) 

Hot 125I  
in EBSS 

(~50,000 cpm) 

 
 

EBSS 

 
 

PMNs 

Standards 50 µl 50 µl 50 µl 300 µl  

Background 50 µl 50 µl 50 µl 300 µl  

Animals 50 µl 50 µl 50 µl 300 µl 50 µl 

 
 
A. Set-up and label 11 X 75 mm snap cap plastic tubes in duplicate in special tumbler racks 

for all animals, Standard and Background tubes. 
 
B. Load in order: 
 
 1. Cold NaI 
 2. Opsonized zymosan (after grinding in clean sterile tissue grinder) 
 3. EBSS 
 4. Hot Na125I  {With appropriate safety ventilation} 
 5. Cap Standard and Background tubes. 
 6. Pre-heat the tubes and media for ~ 5 min by placing the entire rack in the walk-in 

incubator and cover the tubes. 
 7. Start assay in the hood by adding PMNs to the corresponding animal tubes. 
 8. Cap the animal tubes and carefully load the rack into the iodination tumbler in the 

walk-in incubator. 
 9. Turn on the tumbler and start a timer for 20 minutes.  Tumbler rotates ~ 60 times/min. 
 10. Stop the assay by removing the caps from all but the Standard tubes, and adding 3 ml 

of cold 10% (w/v) trichloroacetic acid (TCA). 
 11. Centrifuge in Sorvall RC3C on Program #5 (1171 X g, for 5 minutes @ 0 C), aspirate 

supernatant in hood.  Repeat steps 10 & 11 twice more, then count the TCA-
precipitable protein in the gamma counter.  Load the Standard tubes first, followed by 
the background tubes and then the animal tubes in the proper order. 
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APPENDIX 2. INF-γγγγ BLOOD STIMULATION 
 
Pokeweed Whole Blood Stimulation 

1. Collect blood in heparinized green-top vacutainers.  
2. Place 1 ml whole blood from each sample into 4 wells of a 24-well microtiter plate 
3. Two wells from each sample are incubated with each of the following 

a. 20 µl phosphate buffered saline (negative control – background IFN-γ) 
b. 20 µl PWM (1µg/ml) 

4. Plates were gently shaken and incubated at 37˚C with 5% CO2 for 6 hours 
5. After incubations, plates were spun for 20 minutes at 2000 RPM 
6. Plasma was collected into 1.5ml cryotubes and stored at -20˚C until IFN-γ analysis.  

 
M. bovis/M. avium PPD Whole Blood Stimulation.  

1. Collect blood in heparinized green-top vacutainers.  
2. Place 1 ml whole blood from each sample into 6 wells of a 24-well microtiter plate 
3. Two wells from each sample are incubated with each of the following 

a. 66 µl phosphate buffered saline (negative control – background IFN-γ) 
b. 66 µl M. bovis PPD (20 µg) 
c. 66 µl M. avium PPD (20 µg) 

4. Plates were gently shaken and incubated at 37˚C with 5% CO2 for 24 hours 
5. After incubations, plates were spun for 20 minutes at 2000 RPM 
6. Plasma was collected into 1.5ml cryotubes and stored at -20˚C until IFN-γ analysis. 

 
Plasma samples were evaluated for IFN-γ using the Bovine IFN gamma Screening Set 
(Pierce Biotechnology, Rockford, IL). 
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APPENDIX 3. SERUM IRON DETERMINATION 
 
All reagents are from Iron/TIBC Reagent Set (Pointe Scientific, Inc., Canton, MI) 
 
Standard Curve:  
 250 µg/dl, 125 µg/dl, 62.5 µg/dl, 31.25 µg/dl, 7.8 µg/dl 
 
Protocol: 

1. Add 100 µl of iron buffer reagent to each well of a 96 well microtiter plate.  
2. Add 20 µl of deionized water to the blank well and 20 µl of the appropriate standard 

to each of the standard wells, and 20 µl of the appropriate serum sample to each 
sample well.  All samples and standards were run in duplicate.  

3. A background spectrophotometric reading was taken (Molecular Devices Thermomax 
Microplate Reader, Sunnyvale, CA) at 560nm with a 3 second shake prior to reading.  

4. 20 µl of 1:8 dilution of color reagent was added to each well.  
5. Plates were incubated at 37˚C for 15 minutes.  
6. Samples were again read on the spectrophotometer at 560nm, and the initial reading 

was subtracted from the final reading.   
7. Fe values were calculated based on the standard curve for each plate.  
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